United Kingdom
United Kingdom

Vodafone Group Plc is a British multinational telecommunications company headquartered in London, United Kingdom. It is the world's second-largest mobile telecommunications company measured by both subscribers and 2011 revenues , and had 439 million subscribers as of December 2011. Vodafone owns and operates networks in over 30 countries and has partner networks in over 40 additional countries. Wikipedia.


Time filter

Source Type

Patent
Vodafone | Date: 2016-07-12

System and method for providing secure machine to machine, M2M, communications comprising a device management, DM, server configured to obtain credentials of one or more M2M devices and provision the one or more M2M devices with credentials of a virtual private network, VPN. An application programming interface, API. A VPN server comprising a first communications interface configured to communicate API requests and API responses with the API. A second communications interface configured to provide a VPN for the one or more M2M devices. Logic configured to issue an API request, wherein the request includes the credentials of the VPN. Receive an API response from the DM server including an indication of the one or more M2M devices provisioned with the credentials of the VPN. Initiate a VPN over the second interface between the one or more M2M devices and the VPN server.


A method for resource reservation executed by a network element of a mobile communication network for a communication connection between a mobile device and a communication destination includes: receiving a request for establishing the communication connection between the mobile device and the communication destination originating from an application of the mobile device; determining the type of application requesting the communication connection between the mobile device and the communication destination; estimating the required Quality of Service (QoS) for the requested communication connection with respect to the upload and/or download requirements under consideration of the type of application requesting the communication connection between the mobile device and the communication destination; checking whether the communication connection between the mobile device and the communication destination can provide the estimated required QoS; and reserving if possible the resources for the communication connection between the mobile device and the communication destination to provide the required QoS.


A method of controlling access to a telecommunications network is disclosed. One of a plurality of commercial UEs receives an SIB2 signal from the network. The SIB2 includes a threshold signal BF (0(FR)Linvention concerne un procd de commande daccs un rseau de tlcommunication. Lun dune pluralit dquipements utilisateur (UE) commerciaux reoit un signal SIB2 du rseau. Le SIB2 comprend un signal de seuil BF (0


Patent
Vodafone | Date: 2017-04-05

Method, system and apparatus for provisioning a subscription of a service to a device comprising: receiving a message from a device, the message protected by first provisioning data installed on the device. Authenticating the message using data corresponding to the first provisioning data. On successful authentication, providing data enabling the device to recover protected second provisioning data from a subscription manager. Providing the device with the protected second provisioning data.


Patent
Vodafone | Date: 2017-04-05

User location determining in a cellular network may be provided. Geographical location information for one or more mobile terminals of the cellular network is received at a network entity of the cellular network from one or both of: a core network part of the cellular network; and a network management part of the cellular network. A message for communication from the network entity to another entity is then generated based on the received geographical location information. For instance, this may allow one or mobile terminal locations to be tracked and their locations may be reported.


Patent
Vodafone | Date: 2017-04-12

To facilitate a call between a user of a mobile device and a host of the call, a location of the mobile device is obtained. Based on the obtained location, a device identifier for a local device is automatically retrieved, wherein the local device is located at or around the obtained location. A dial-out request is sent to a conference system requesting that the conference system establish a communication link between the local device associated with the retrieved device identifier and a remote device associated with the host.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: ICT-30-2015 | Award Amount: 8.00M | Year: 2016

The objective of the BIG IoT project is to ignite really vibrant Internet of Things (IoT) ecosystems. We will achieve this by bridging the current interoperability gap between the vertically integrated IoT platforms and by creating marketplaces for IoT services and applications. Despite various research and innovation projects working on the Internet of Things, no broadly accepted professional IoT ecosystems exist. The reason for that are high market entry barriers for developers and service providers due to a fragmentation of IoT platforms. The goal of this project is to overcome these hurdles by Bridging the Interoperability Gap of the IoT and by creating marketplaces for service and application providers as well as platform operators. We will address the interoperability gap by defining a generic, unified Web API for smart object platforms, called the BIG IoT API. The establishment of a marketplace where platform, application, and service providers can monetize their assets will introduce an incentive to grant access to formerly closed systems and lower market entry barriers for developers. The BIG IoT consortium is well suited to reach the outlined goals, as it comprises all roles of an IoT ecosystem: resource providers (e.g., SIEMENS, SEAT), service and application developers (e.g., VODAFONE, VMZ), marketplace providers (e.g., ATOS), platform providers (e.g., BOSCH, CSI, ECONAIS), as well as end users connected through the public private partnerships of WAG and CSI or the user-focused information services that VMZ provides for the city of Berlin. The major industry players cover multiple domains, including mobility, automotive, telecommunications, and IT services. Four university departments will help to transfer the state of the art into the state of the practice and solve the open research challenges. This consortium will mobilise the necessary critical mass at European level to achieve the goals and to reach the ireach the impacts set out in this project.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: ICT-04-2015 | Award Amount: 8.00M | Year: 2016

Modular Microserver DataCentre (M2DC) will investigate, develop and demonstrate (Technology Readiness Level 7) a modular, highly-efficient, cost-optimized server architecture composed of heterogeneous microserver computing resources, being able to be tailored to meet requirements from various application domains such as image processing, cloud computing or even HPC. To achieve this objective, M2DC will be built on three main pillars: - [Pillar 1] A flexible server architecture that can be easily customised, maintained and updated so as to enable adaptation of the data centre. Open server architecture will enable integration of computing resources with constrained thermal power dissipation such as embedded CPUs, GPUs, FPGAs, manycore processors integrated using established standards such as COM Express. - [Pillar 2] Advanced management strategies [Pillar 2a] and system efficiency enhancements (SEE) [Pillar 2b] will improve the behaviour of the system during runtime. The server architecture will include built-in enhancements (e.g., for computing acceleration, energy efficiency, dependability and security, behaviour monitoring, etc.) on system level. - [Pillar 3] Well-defined interfaces to surrounding software ecosystem will allow for an easy integration into existing data centre management solutions through the use of the latest middleware software for resource management, provisioning, etc. The results of these three pillars will be combined to produce TCO (Total Cost of Ownership)-optimized appliances, deployed in a real data centre environment and seamlessly interacting with existing infrastructure to run real-life applications.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: IoT-01-2016 | Award Amount: 25.77M | Year: 2017

ACTIVAGE is a European Multi Centric Large Scale Pilot on Smart Living Environments. The main objective is to build the first European IoT ecosystem across 9 Deployment Sites (DS) in seven European countries, reusing and scaling up underlying open and proprietary IoT platforms, technologies and standards, and integrating new interfaces needed to provide interoperability across these heterogeneous platforms, that will enable the deployment and operation at large scale of Active & Healthy Ageing IoT based solutions and services, supporting and extending the independent living of older adults in their living environments, and responding to real needs of caregivers, service providers and public authorities. The project will deliver the ACTIVAGE IoT Ecosystem Suite (AIOTES), a set of Techniques, Tools and Methodologies for interoperability at different layers between heterogeneous IoT Platforms and an Open Framework for providing Semantic Interoperability of IoT Platforms for AHA, addressing trustworthiness, privacy, data protection and security. User-demand driven interoperable IoT-enabled Active & Healthy Ageing solutions will be deployed on top of the AIOTES in every DS, enhancing and scaling up existing services, for the promotion of independent living, the mitigation of frailty, and preservation of quality of life and autonomy. ACTIVAGE will assess the socio-economic impact, the benefits of IoT-based smart living environments in the quality of life and autonomy, and in the sustainability of the health and social care systems, demonstrating the seamless capacity of integration and interoperability of the IoT ecosystem, and validating new business, financial and organizational models for care delivery, ensuring the sustainability after the project end, and disseminating these results to a worldwide audience. The consortium comprises industries, research centres, SMEs, service providers, public authorities encompassing the whole value chain in every Deployment Site.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: LCE-06-2015 | Award Amount: 12.66M | Year: 2016

The project SmartNet aims at providing architectures for optimized interaction between TSOs and DSOs in managing the exchange of information for monitoring and for the acquisition of ancillary services (reserve and balancing, voltage regulation, congestion management) both at national level and in a cross-border context. Local needs for ancillary services in distribution systems are supposed to co-exist with system needs for balancing and congestion management. Resources located in distribution systems, like demand side management and distributed generation, are supposed to participate to the provision of ancillary services both locally and for the system in the context of competitive ancillary services markets. Through an in-depth and a simulation in a lab-environment, answers are sought for to the following questions: which ancillary services could be provided from distribution to the whole system (via transmission), which optimized modalities could be adopted for managing the network at the TSO-DSO interface and what monitoring and control signals could be exchanged to carry out a coordinated action, how the architectures of the real time markets (in particular the balancing markets) could be consequently revised, what information has to be exchanged and how (ICT) for the coordination on the distribution-transmission border, starting from monitoring aspects, to guarantee observability and control of distributed generation, flexible demand and storage systems, which implications could the above issues have on the on-going market coupling process, that is going to be extended to real time markets in the next years, according to the draft Network Code on Electricity Balancing by ENTSO-E. Different TSO-DSO interaction modalities are compared with reference to three selected national cases (Italian, Danish, Spanish) also supposing the possibility of a cross-border exchange of balancing services. Physical pilots are developed for the same national cases.

Loading Vodafone collaborators
Loading Vodafone collaborators