Entity

Time filter

Source Type

Montréal, Canada

Leyland-Jones B.,Emory University | Smith B.R.,VM Institute of Research
The Lancet Oncology | Year: 2011

Determination of the human epidermal growth factor receptor 2 (HER2; also known as ERBB2) status of breast tumours is emphasised in various national guidelines as a necessary step for the diagnosis of breast cancer. As an alternative to tissue-based diagnostic methods, there has been substantial interest in the establishment of an easily accessible serum-based alternative that could be used for prognosis and diagnosis. Detection of serum-soluble-HER2 extracellular domain (ECD) and establishment of its potential clinical usefulness has created much debate. We assessed whether identification of circulating concentrations of HER2 ECD have clinical usefulness for management of patients with HER2-positive breast cancer. We examined data from 63 studies of patients with breast cancer. Prevalence of increased concentrations varied greatly between studies. Some studies showed significant associations between raised concentrations and poor prognosis, poor response to treatments including trastuzumab, or tumour characteristics associated with aggressive disease, whereas others did not. Examination of existing data showed that concentrations of HER2 ECD are not consistently related to patient outcomes; therefore, there is insufficient evidence to support the clinical use of serum HER2 ECD testing. Design and execution of future large-scale trials to investigate the clinical use of HER2 ECD testing, in view of the progressive non-supportive evidence, is not recommended. Oncologists should continue to adhere to national guidelines for determining HER2 status. Furthermore, oncologists should continue to use clinical parameters when making decisions about initiation, continuation, and discontinuation of HER2-targeted treatments. © 2011 Elsevier Ltd. Source


Leyland-Jones B.,Avera Cancer Institute | Gray K.P.,Dana-Farber Cancer Institute | Abramovitz M.,VM Institute of Research | Bouzyk M.,AKESOgen Inc. | And 24 more authors.
Breast Cancer Research and Treatment | Year: 2015

Estrogen receptor 1 (ESR1) and ESR2 gene polymorphisms have been associated with endocrine-mediated physiological mechanisms, and inconsistently with breast cancer risk and outcomes, bone mineral density changes, and hot flushes/night sweats. DNA was isolated and genotyped for six ESR1 and two ESR2 single-nucleotide polymorphisms (SNPs) from tumor specimens from 3691 postmenopausal women with hormone receptor-positive breast cancer enrolled in the BIG 1-98 trial to receive tamoxifen and/or letrozole for 5 years. Associations with recurrence and adverse events (AEs) were assessed using Cox proportional hazards models. 3401 samples were successfully genotyped for five SNPs. ESR1 rs9340799(XbaI) (T>C) variants CC or TC were associated with reduced breast cancer risk (HR = 0.82,95 % CI = 0.67–1.0), and ESR1 rs2077647 (T>C) variants CC or TC was associated with reduced distant recurrence risk (HR = 0.69, 95 % CI = 0.53–0.90), both regardless of the treatments. No differential treatment effects (letrozole vs. tamoxifen) were observed for the association of outcome with any of the SNPs. Letrozole-treated patients with rs2077647 (T>C) variants CC and TC had a reduced risk of bone AE (HR = 0.75, 95 % CI = 0.58–0.98, Pinteraction = 0.08), whereas patients with rs4986938 (G>A) genotype variants AA and AG had an increased risk of bone AE (HR = 1.37, 95 % CI = 1.01–1.84, Pinteraction = 0.07). We observed that (1) rare ESR1 homozygous polymorphisms were associated with lower recurrence, and (2) ESR1 and ESR2 SNPs were associated with bone AEs in letrozole-treated patients. Genes that are involved in estrogen signaling and synthesis have the potential to affect both breast cancer recurrence and side effects, suggesting that individual treatment strategies can incorporate not only oncogenic drivers but also SNPs related to estrogen activity. © 2015, Springer Science+Business Media New York. Source


Leyland-Jones B.,Avera Cancer Institute | Gray K.P.,Dana-Farber Cancer Institute | Gray K.P.,Harvard University | Abramovitz M.,VM Institute of Research | And 25 more authors.
Breast Cancer Research and Treatment | Year: 2015

To determine whether CYP19A1 polymorphisms are associated with abnormal activity of aromatase and with musculoskeletal and bone side effects of aromatase inhibitors. DNA was isolated from tumor specimens of 4861 postmenopausal women with hormone receptor-positive breast cancer enrolled in the BIG 1–98 trial to receive tamoxifen and/or letrozole for 5 years. Tumors were genotyped for six CYP19A1 polymorphisms using PCR-based methods. Associations with breast cancer-free interval (BCFI), distant recurrence-free interval (DRFI), musculoskeletal and bone adverse events (AEs) were assessed using Cox proportional hazards models. All statistical tests were two-sided. No association between the CYP19A1 genotypes and BCFI or DRFI was observed overall. A reduced risk of a breast cancer event for tamoxifen-treated patients with rs700518 variants was observed (BCFI CC/TC vs. TT: HR 0.53, 95 % CI 0.34–0.82, interaction P = 0.08), but not observed for letrozole-treated patients. There was an increased risk of musculoskeletal AEs for patients with rs700518 variants CC/TC versus TT (HR 1.22, 95 % CI 1.03–1.45, P = 0.02), regardless of treatment. Tamoxifen-treated patients with rs4646 variants had a reduced risk of bone AEs (AA/CA vs. CC: HR 0.76, 95 % CI 0.59–0.98), whereas an increase of minor allele (C) of rs10046 was associated with an increased risk of bone AEs (HR 1.28, 95 % CI 1.07–1.52). rs936308 variants were associated with a reduced risk of bone AEs in letrozole-treated patients (GG/GC vs. CC: HR 0.73, 95 % CI 0.54–0.99), different from in tamoxifen-treated patients (GG/GC vs. CC: HR 1.32, 95 % CI 0.92–1.90, interaction P = 0.01). CYP19A1 rs700518 variants showed associations with BCFI, DRFI, in tamoxifen treated patients and musculoskeletal AEs regardless of treatment. SNPs rs4646, rs10046, and rs936308 were associated with bone AEs. © 2015, Springer Science+Business Media New York. Source


Dey N.,Sanford Research | Dey N.,University of South Dakota | Young B.,Sanford Research | Young B.,Scripps Research Institute | And 9 more authors.
PLoS ONE | Year: 2013

Mutations of genes in tumor cells of Triple Negative subset of Breast Cancer (TNBC) deregulate pathways of signal transduction. The loss of tumor suppressor gene PTEN is the most common first event associated with basal-like subtype (Martins, De, Almendro, Gonen, and Park, 2012). Here we report for the first time that the functional upregulation of secreted-MMP7, a transcriptional target of Wnt-β-catenin signature pathway in TNBC is associated to the loss of PTEN. We identified differential expression of mRNAs in several key-components genes, and transcriptional target genes of the Wnt-β-catenin pathway (WP), including beta-catenin, FZD7, DVL1, MMP7, c-MYC, BIRC5, CD44, PPARD, c-MET, and NOTCH1 in FFPE tumors samples from TNBC patients of two independent cohorts. A similar differential upregulation of mRNA/protein for beta-catenin, the functional readout of WP, and for MMP7, a transcriptional target gene of beta-catenin was observed in TNBC cell line models. Genetic or pharmacological attenuation of beta-catenin by SiRNA or WP modulators (XAV939 and sulindac sulfide) and pharmacological mimicking of PTEN following LY294002 treatment downregulated MMP7 levels as well as enzymatic function of the secreted MMP7 in MMP7 positive PTEN-null TNBC cells. Patient data revealed that MMP7 mRNA was high in only a subpopulation of TNBC, and this subpopulation was characterized by a concurrent low expression of PTEN mRNA. In cell lines, a high expression of casein-zymograph-positive MMP7 was distinguished by an absence of functional PTEN. A similar inverse relationship between MMP7 and PTEN mRNA levels was observed in the PAM50 data set (a correlation coefficient of -0.54). The PAM50 subtype and outcome data revealed that the high MMP7 group had low pCR (25%) and High Rd (74%) in clinical stage T3 pathologic response in contrast to the high pCR (40%) and low residual disease (RD) (60%) of the low MMP7 group. © 2013 Dey et al. Source


Dey N.,Sanford Research | Dey N.,University of South Dakota | Barwick B.G.,Winship Cancer Institute | Moreno C.S.,Emory University | And 16 more authors.
BMC Cancer | Year: 2013

Background: Triple Negative subset of (TN) Breast Cancers (BC), a close associate of the basal-like subtype (with limited discordance) is an aggressive form of the disease which convey unpredictable, and poor prognosis due to limited treatment options and lack of proven effective targeted therapies.Methods: We conducted an expression study of 240 formalin-fixed, paraffin-embedded (FFPE) primary biopsies from two cohorts, including 130 TN tumors, to identify molecular mechanisms of TN disease.Results: The annotation of differentially expressed genes in TN tumors contained an overrepresentation of canonical Wnt signaling components in our cohort and others. These observations were supported by upregulation of experimentally induced oncogenic Wnt/β-catenin genes in TN tumors, recapitulated using targets induced by Wnt3A. A functional blockade of Wnt/β-catenin pathway by either a pharmacological Wnt-antagonist, WntC59, sulidac sulfide, or β-catenin (functional read out of Wnt/β-catenin pathway) SiRNA mediated genetic manipulation demonstrated that a functional perturbation of the pathway is causal to the metastasis- associated phenotypes including fibronectin-directed migration, F-actin organization, and invasion in TNBC cells. A classifier, trained on microarray data from β-catenin transfected mammary cells, identified a disproportionate number of TNBC breast tumors as compared to other breast cancer subtypes in a meta-analysis of 11 studies and 1,878 breast cancer patients, including the two cohorts published here. Patients identified by the Wnt/β-catenin classifier had a greater risk of lung and brain, but not bone metastases.Conclusion: These data implicate transcriptional Wnt signaling as a hallmark of TNBC disease associated with specific metastatic pathways. © 2013 Dey et al.; licensee BioMed Central Ltd. Source

Discover hidden collaborations