Entity

Time filter

Source Type

Costa Mesa, CA, United States

The present inventions are directed to compositions and methods regarding the reprogramming of other cells (such as fibroblast cells) into cardiomyocytes without introducing exogenous genes to the samples. In particular, the present inventions are directed to transducible materials that are capable of transducing into the biological samples but are not genes or causing genetic modifications. The present inventions also are directed to methods of reprogramming the path of biological samples or treating diseases using the tranducible compositions thereof.


Patent
Oregon Health And Science University and Vivoscript Inc. | Date: 2012-07-19

The present inventions are directed to compositions and methods regarding the reprogramming of other cells (such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), MSCs, fibroblasts, hematopoietic stem cells, endothelian stem cells, adipocytes, chondrocytes, osteoblasts, osteoclasts and endothelial cells) into chondrogenic cells without introducing exogenous genes to the samples. In particular, the present inventions are directed to transducible materials that are capable of transducing into the biological samples but are not genes or causing genetic modifications. The present inventions also are directed to methods of reprogramming the path of biological samples or treating diseases using the tranducible compositions thereof.


The present inventions are directed to compositions and methods regarding the reprogramming of other cells (such as glial cells) into neurons without introducing exogenous genes to the samples. In particular, the present inventions are directed to transducible materials that are capable of transducing into the biological samples but are not genes or causing genetic modifications. The present inventions also are directed to methods of reprogramming the path of biological samples or treating diseases using the transducible compositions thereof.


Patent
Vivoscript Inc. | Date: 2011-11-03

The present disclosure provides a new technology platform that converts one type of cells (substrate cells) to another type of cells (product cells).


Yomogida K.,Oregon Health And Science University | Yomogida K.,Portland Medical Center | Chou Y.,Oregon Health And Science University | Chou Y.,Portland Medical Center | And 7 more authors.
Cytokine | Year: 2012

Streptavidin is widely used as a detection tool in biology research because of its high affinity and specificity binding to biotin. Biotin-streptavidin system has also been explored for detection of infection and tumor in clinical medicine. Here, we show immunosuppressive property of streptavidin on T cell activation and proliferation. Upon CD3 and CD28 stimulation, CD4 + T cells produce interleukin 2 (IL-2) and express IL-2 receptor α chain (CD25). Addition of streptavidin in T cell culture suppressed IL-2 synthesis and CD25 expression with no cytotoxicity. The immunosuppressive effect of streptavidin was reversed by excessive biotin. Conjugated to a single chain anti-CD7 variable fragment (scFvCD7), streptavidin was directly delivered to T cells and showed substantially more profound suppressive effect on T cell activation. These results suggest that streptavidin could potentially be used as a novel immunomodulator. © 2012. Source

Discover hidden collaborations