Time filter

Source Type

Rani A.,Institute of Himalayan Bioresource Technology | Rani A.,Vittal Mallya Scientific Research Foundation | Vats S.K.,Institute of Himalayan Bioresource Technology | Sharma M.,Institute of Himalayan Bioresource Technology | Kumar S.,Institute of Himalayan Bioresource Technology
Biologia Plantarum | Year: 2011

Catechin is associated with several functions in animal and plant systems, with little information available regarding its role in plant growth. Low concentrations of catechin (50 and 100 μM) were found to enhance length of primary and lateral roots, number of lateral roots, fresh and dry masses of shoots and roots, leaf area, water potential of leaf and root tissues, the number of vascular bundles in the inflorescence, and leaf thickness in Arabidopsis thaliana ecotype Col-0. A significant increase in net photosynthetic rate, stomatal conductance and concentration of indole-3-acetic acid was also observed in catechin treated plants. © 2011 Springer Science+Business Media B.V. Source

Shivprakash S.,Vittal Mallya Scientific Research Foundation | Reddy G.C.,Vittal Mallya Scientific Research Foundation
Synthetic Communications | Year: 2014

A synthetic method of producing (E)- and (Z)-isomers of 1-benzhydryl-4-cinnamylpiperazines in a specific ratio from corresponding benzhydrylpiperazine is described. Of the three compounds synthesized (5a-c), the ratio of E/Z-isomers remained around 15:85. The key intermediates, 1-benzhydryl-4-(2,2-dimethoxyethyl)piperazine derivatives (3a-c), were prepared by nucleophilic substitution reaction of benzhydrylpiperazines (2a-c) with chloroacetaldehyde dimethylacetal in good yield (up to 88%). Hydrolysis of 3a-c gave the corresponding aldehydes 4a-c, which when subjected to the Wittig reaction followed by column purification to afford 1a-c (E-isomers) and 6a-c (Z-isomers) in pure form. The isolated compounds were characterized by NMR and mass spectral analysis. [Supplementary materials are available for this article. Go to the publisher's online edition of Synthetic Communications® for the following free supplemental resource(s): Full experimental and spectral details.] Copyright © 2014 Taylor & Francis Group, LLC. Source

Srikanta Dani K.G.,Vittal Mallya Scientific Research Foundation | Srikanta Dani K.G.,University of Bristol | Hatti K.S.,Vittal Mallya Scientific Research Foundation | Ravikumar P.,Vittal Mallya Scientific Research Foundation | Kush A.,Vittal Mallya Scientific Research Foundation
Plant Biology | Year: 2011

The distinguishing structural and functional domains of plant acyl-acyl carrier protein (ACP) thioesterases and their complex interaction with the ACP-linked fatty acid substrate complex have remained elusive. E. coli based heterologous expression and characterisation of many plant thioesterases reported so far have not been extended and linked to in silico modelling studies to explain the diversity in plant thioesterase substrate specificities. In this study, a thioesterase cDNA isolated from immature seed tissues of Jatropha curcas was found to be type B and specific to stearoyl acyl ACP when expressed in E. coli K27fadD88, a lipid utilisation mutant. Homology modelling and molecular docking of a selected region of the isolated JcFatB protein predicted that it had high affinity towards both stearate (18:0) and palmitate (16:0). Structural analysis of the sequence confirmed the presence of a transit peptide that is processed in multiple steps. The enzyme is localised in the chloroplasts and has an N-terminal inner chloroplast transmembrane domain characteristic of type B plant thioesterases. Docking of ligands with JcFatB and its comparison with a modelled Jatropha thioesterase type A provided further evidence for native substrate preferences of Jatropha thioesterases. This study provides essential clues to develop future methods for large-scale bacterial production of free fatty acids and for design of strategies to modulate the seed oil composition in this important non-edible, seed oil plant. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands. Source

Dani K.G.S.,Vittal Mallya Scientific Research Foundation | Ravikumar P.,Vittal Mallya Scientific Research Foundation | Kumar R.P.,Vittal Mallya Scientific Research Foundation | Kush A.,Vittal Mallya Scientific Research Foundation
Biologia Plantarum | Year: 2011

A combination of directed amplification of minisatellite DNA (DAMD) and random amplification of polymorphic DNA (RAPD) primes were used to assess the genetic variation within and between three isolated populations of Indian sandalwood (Santalum album). Eleven primers used in this study amplified 65.99 % polymorphic bands. Analysis of molecular variance revealed a high genetic variation among these populations (φST = 0.549). There are indications of clonality within the existing Indian sandalwood populations which can be attributed to habitat fragmentation, isolation and vegetative reproduction. © 2011 Springer Science+Business Media B.V. Source

Rani A.,Vittal Mallya Scientific Research Foundation | Ravikumar P.,Vittal Mallya Scientific Research Foundation | Reddy M.D.,Vittal Mallya Scientific Research Foundation | Kush A.,Vittal Mallya Scientific Research Foundation
Gene | Year: 2013

Santalum album L. commonly known as East-Indian sandal or chandan is a hemiparasitic tree of family santalaceae. Santalol is a bioprospecting molecule present in sandalwood and any effort towards metabolic engineering of this important moiety would require knowledge on gene regulation. Santalol is a sesquiterpene synthesized through mevalonate or non-mevalonate pathways. First step of santalol biosynthesis involves head to tail condensation of isopentenyl pyrophosphate (IPP) with its allylic co-substrate dimethyl allyl pyrophosphate (DMAPP) to produce geranyl pyrophosphate (GPP; C10 - a monoterpene). GPP upon one additional condensation with IPP produces farnesyl pyrophosphate (FPP; C15 - an open chain sesquiterpene). Both the reactions are catalyzed by farnesyl diphosphate synthase (FDS). Santalene synthase (SS), a terpene cyclase catalyzes cyclization of open ring FPP into a mixture of cyclic sesquiterpenes such as α-santalene, epi-β-santalene, β-santalene and exo bergamotene, the main constituents of sandal oil. The objective of the present work was to generate a comprehensive knowledge on the genes involved in santalol production and study their molecular regulation. To achieve this, sequences encoding farnesyl diphosphate synthase and santalene synthase were isolated from sandalwood using suppression subtraction hybridization and 2D gel electrophoresis technology. Functional characterization of both the genes was done through enzyme assays and tissue-specific expression of both the genes was studied. To our knowledge, this is the first report on studies on molecular regulation, and tissue-specific expression of the genes involved in santalol biosynthesis. © 2013 Elsevier B.V. Source

Discover hidden collaborations