Malvern, PA, United States
Malvern, PA, United States

Vishay Intertechnology, Inc. is one of the world's largest manufacturers of discrete semiconductors and passive electronic components. Vishay has manufacturing plants in Israel, Asia, Europe, and the Americas where it produces rectifiers, diodes, MOSFETs, optoelectronics, selected integrated circuits, resistors, capacitors, and inductors. Vishay Intertechnology revenues for 2011 were $2.594 billion. As of December 31, 2011, Vishay Intertechnology had approximately 20,900 full-time employees. Wikipedia.


Time filter

Source Type

An electrical device comprising a ribbed molded body housing an electrical component is provided. The ribbed molded body includes at least one surface or portion having a plurality of ribs along at least a portion of the surface. The electrical component may be a passive or active electrical component. The electrical component may be connected to a lead frame and molded into the ribbed molded body.


Patent
Vishay | Date: 2016-06-27

A resistor includes a substantially cylindrical resistive element having a resistance of less than about 1 m, a substantially cylindrical first termination electrically connected to the resistive element and a second termination electrically connected to the resistive element. The substantially cylindrical first termination is hollow to allow for accepting a connection such as from a battery cable. In addition there may be sense leads present on the resistor. A method of forming a substantially cylindrical resistor includes forming a hollow cylindrical resistor body by rolling a flat sheet comprising a resistive element and a first termination and a second termination joined on opposite ends of the resistive element.


First polysilicon (poly-1) is deposited into deep trenches that have been formed in a substrate. A first polysilicon polishing process is performed to planarize the exposed surfaces of the poly-1 so that the surfaces are flush with adjacent surfaces. Then, shallow trenches are formed in the substrate between the deep trenches, and second polysilicon (poly-2) is deposited into the shallow trenches. A second polysilicon polishing process is performed to planarize the exposed surface of the poly-2 so that the surface is flush with adjacent surfaces. Metal contacts to the poly-1 and the poly-2 are then formed.


Trench MOSFET with self-aligned body contact with spacer. In accordance with an embodiment of the present invention, a semiconductor device includes a semiconductor substrate, and at least two gate trenches formed in the semiconductor substrate. Each of the trenches comprises a gate electrode. The semiconductor device also includes a body contact trench formed in the semiconductor substrate between the gate trenches. The body contact trench has a lower width at the bottom of the body contact trench and an ohmic body contact implant beneath the body contact trench. The horizontal extent of the ohmic body contact implant is at least the lower width of the body contact trench.


A method for fabricating a MOSFET having an active area and an edge termination area is disclosed. The method includes forming a first plurality of implants at the bottom of trenches located in the active area and in the edge termination area. A second plurality of implants is formed at the bottom of the trenches located in the active area. The second plurality of implants formed at the bottom of the trenches located in the active area causes the implants formed at the bottom of the trenches located in the active area to reach a predetermined concentration. In so doing, the breakdown voltage of both the active and edge termination areas can be made similar and thereby optimized while maintaining advantageous RDson.


A metal insulator semiconductor field effect transistor (MISFET) such as a super junction metal oxide semiconductor FET with high voltage breakdown is realized by, in essence, stacking a relatively low aspect ratio column (trenches filled with dopant, e.g., p-type dopant) on top of a volume or volumes formed by implanting the dopant in lower layers. Together, the low aspect ratio column and the volume(s) form a continuous high aspect ratio column.


Patent
Vishay | Date: 2017-04-26

A semiconductor device - e.g., a super junction power MOSFET - includes a number of columns of one type of dopant formed in a region of another type of dopant. Generally speaking, the columns are modulated in some manner. For example, the widths (e.g., diameters) of some columns are greater than the widths of other columns.


Patent
Vishay | Date: 2017-02-08

Magnetic components and a method for making them are described. A conducting material may be cut using a high power laser such as, but not limited to, a rare-earth fiber laser such as a Ytterbium fiber laser. Alternatively, a conducting material may be cut using an abrasive water jet. The magnetic components may be planar.


During fabrication, a second oxide layer is disposed over a first region and a second region of a structure. The second region includes a first oxide layer between the second oxide layer and an epitaxial layer. The first region corresponds to an active region of a metal-insulator-semiconductor field effect transistor (MISFET), and a first-type dopant source region, a second-type dopant body region, and a second-type dopant implant region are formed in the first region. The second region corresponds to a termination region of the MISFET. A mask is formed over the second region, and parts of the second oxide layer and the first oxide layer that are exposed through the gaps are removed, thereby exposing the epitaxial layer. Second-type dopant is deposited into the epitaxial layer through the resultant openings in the first and second oxide layers, thereby forming field rings for the MISFET.


A split gate semiconductor device includes a trench gate having a first electrode region and a second electrode region that are separated from each other by a gate oxide layer and an adjacent dielectric layer. The boundary of the gate oxide layer and the dielectric layer is curved to avoid a sharp corner where the gate oxide layer meets the sidewalls of the trench.

Loading Vishay collaborators
Loading Vishay collaborators