Virtual Institute for Microbial Stress and Survival

United States

Virtual Institute for Microbial Stress and Survival

United States
SEARCH FILTERS
Time filter
Source Type

Kimes N.E.,Medical University of South Carolina | Kimes N.E.,Hollings Marine Laboratory | Van Nostrand J.D.,University of Oklahoma | Van Nostrand J.D.,Virtual Institute for Microbial Stress and Survival | And 6 more authors.
Environmental Microbiology | Year: 2010

A functional gene array (FGA), GeoChip 2.0, was used to assess the biogeochemical cycling potential of microbial communities associated with healthy and Caribbean yellow band diseased (YBD) Montastraea faveolata. Over 6700 genes were detected, providing evidence that the coral microbiome contains a diverse community of archaea, bacteria and fungi capable of fulfilling numerous functional niches. These included carbon, nitrogen and sulfur cycling, metal homeostasis and resistance, and xenobiotic contaminant degradation. A significant difference in functional structure was found between healthy and YBD M. faveolata colonies and those differences were specific to the physical niche examined. In the surface mucopolysaccharide layer (SML), only two of 31 functional categories investigated, cellulose degradation and nitrification, revealed significant differences, implying a very specific change in microbial functional potential. Coral tissue slurry, on the other hand, revealed significant changes in 10 of the 31 categories, suggesting a more generalized shift in functional potential involving various aspects of nutrient cycling, metal transformations and contaminant degradation. This study is the first broad screening of functional genes in coral-associated microbial communities and provides insights regarding their biogeochemical cycling capacity in healthy and diseased states. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.


Andrews S.S.,Lawrence Berkeley National Laboratory | Andrews S.S.,Tata Institute of Fundamental Research | Andrews S.S.,Molecular science Institute | Andrews S.S.,Fred Hutchinson Cancer Research Center | And 7 more authors.
PLoS Computational Biology | Year: 2010

Most cellular processes depend on intracellular locations and random collisions of individual protein molecules. To model these processes, we developed algorithms to simulate the diffusion, membrane interactions, and reactions of individual molecules, and implemented these in the Smoldyn program. Compared to the popular MCell and ChemCell simulators, we found that Smoldyn was in many cases more accurate, more computationally efficient, and easier to use. Using Smoldyn, we modeled pheromone response system signaling among yeast cells of opposite mating type. This model showed that secreted Bar1 protease might help a cell identify the fittest mating partner by sharpening the pheromone concentration gradient. This model involved about 200,000 protein molecules, about 7000 cubic microns of volume, and about 75 minutes of simulated time; it took about 10 hours to run. Over the next several years, as faster computers become available, Smoldyn will allow researchers to model and explore systems the size of entire bacterial and smaller eukaryotic cells. © 2010 Andrews et al.


Xu T.,University of Oklahoma | Li Y.,University of Oklahoma | He Z.,University of Oklahoma | He Z.,Virtual Institute for Microbial Stress and Survival | And 4 more authors.
Molecular Microbiology | Year: 2014

Cellulosomes are key for lignocellulosic biomass degradation in cellulolytic Clostridia. Better understanding of the mechanism of cellulosome regulation would allow us to improve lignocellulose hydrolysis. It is hypothesized that cellulosomal protease inhibitors would regulate cellulosome architecture and then lignocellulose hydrolysis. Here, a dockerin-containing protease inhibitor gene (dpi) in Clostridium cellulolyticum H10 was characterized by mutagenesis and physiological analyses. The dpi mutant had a decreased cell yield on glucose, cellulose and xylan, lower cellulose utilization efficiency, and a 70% and 52% decrease of the key cellulosomal components, Cel48F and Cel9E respectively. The decreased cellulolysis is caused by the proteolysis of major cellulosomal components, such as Cel48F and Cel9E. Disruption of cel9E severely impaired cell growth on cellulose while loss of cel48F completely abolished cellulolytic activity. These observations are due to the combinational results of gene inactivation and polar effects caused by intron insertion. Purified recombinant Dpi showed inhibitory activity against cysteine protease. Taken together, Dpi protects key cellulosomal cellulases from proteolysis in H10. This study identified the physiological importance of cellulosome-localized protease inhibitors in Clostridia. © 2013 John Wiley & Sons Ltd.


Dey S.S.,University of California at Berkeley | Dey S.S.,University Utrecht | Foley J.E.,University of California at Berkeley | Limsirichai P.,University of California at Berkeley | And 6 more authors.
Molecular Systems Biology | Year: 2015

While gene expression noise has been shown to drive dramatic phenotypic variations, the molecular basis for this variability in mammalian systems is not well understood. Gene expression has been shown to be regulated by promoter architecture and the associated chromatin environment. However, the exact contribution of these two factors in regulating expression noise has not been explored. Using a dual-reporter lentiviral model system, we deconvolved the influence of the promoter sequence to systematically study the contribution of the chromatin environment at different genomic locations in regulating expression noise. By integrating a large-scale analysis to quantify mRNA levels by smFISH and protein levels by flow cytometry in single cells, we found that mean expression and noise are uncorrelated across genomic locations. Furthermore, we showed that this independence could be explained by the orthogonal control of mean expression by the transcript burst size and noise by the burst frequency. Finally, we showed that genomic locations displaying higher expression noise are associated with more repressed chromatin, thereby indicating the contribution of the chromatin environment in regulating expression noise. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.


Zane G.M.,University of Missouri | Zane G.M.,Virtual Institute for Microbial Stress and Survival | Bill Yen H.-C.,University of Missouri | Bill Yen H.-C.,Virtual Institute for Microbial Stress and Survival | And 2 more authors.
Applied and Environmental Microbiology | Year: 2010

The pathway of electrons required for the reduction of sulfate in sulfate-reducing bacteria (SRB) is not yet fully characterized. In order to determine the role of a transmembrane protein complex suggested to be involved In this process, a deletion in Desulfovibrio vulgaris Hildenborough was created by marker exchange mutagenesis that eliminated four genes putatively encoding the QmoABC complex and a hypothetical protein (DVU0851). The Qmo (guinone-interacting membrane-bound oxidoreductase) complex is proposed to be responsible for transporting electrons to the dissimilatory adenosine-5′- phosphosulfate reductase in SRB. In support of the predicted role of this complex, the deletion mutant was unable to grow using sulfate as its sole electron acceptor with a range of electron donors. To explore a possible role for the hypothetical protein in sulfate reduction, a second mutant was constructed that had lost only the gene that codes for the DVU0851 protein. The second constructed mutant grew with sulfate as the sole electron acceptor; however, there was a lag that was not present with the wild-type or complemented strain. Neither deletion strain was significantly impaired for growth with sulfite or thiosulfate as the terminal electron acceptor. Complementation of the Δ(qmoABC-DVU0851) mutant with all four genes or only the qmoABC genes restored its ability to grow by sulfate respiration. These results confirmed the prediction that the Qmo complex is in the electron pathway for sulfate reduction and revealed that no other transmembrane complex could compensate when Qmo was lacking. Copyright © 2010, American society tor Microbiology. All Rights Reserved.


Keller K.L.,University of Missouri | Keller K.L.,Virtual Institute for Microbial Stress and Survival | Wall J.D.,University of Missouri | Wall J.D.,Virtual Institute for Microbial Stress and Survival | Wall J.D.,Berkeley Networks
Frontiers in Microbiology | Year: 2011

Progress in the genetic manipulation of the Desulfovibrio strains has provided an opportunity to explore electron flow pathways during sulfate respiration. Most bacteria in this genus couple the oxidation of organic acids or ethanol with the reduction of sulfate, sulfite, or thiosulfate. Both fermentation of pyruvate in the absence of an alternative terminal electron acceptor, disproportionation of fumarate and growth on H2 with CO2 during sulfate reduction are exhibited by some strains. The ability to produce or consume H2 provides Desulfovibrio strains the capacity to participate as either partner in interspecies H2 transfer. Interestingly the mechanisms of energy conversion, pathways of electron flow and the parameters determining the pathways used remain to be elucidated. Recent application of molecular genetic tools for the exploration of the metabolism of Desulfovibrio vulgaris Hildenborough has provided several new datasets that might provide insights and constraints to the electron flow pathways.These datasets include (1) gene expression changes measured in microarrays for cells cultured with different electron donors and acceptors, (2) relative mRNA abundances for cells growing exponentially in defined medium with lactate as carbon source and electron donor plus sulfate as terminal electron acceptor, and (3) a random transposon mutant library selected on medium containing lactate plus sulfate supplemented with yeast extract. Studies of directed mutations eliminating apparent key components, the quinone-interacting membrane-bound oxidoreductase (Qmo) complex, the Type 1 tetraheme cytochrome c3 (Tp1-c3), or the Type 1 cytochrome c3:menaquinone oxidoreductase (Qrc) complex, suggest a greater flexibility in electron flow than previously considered. The new datasets revealed the absence of random transposons in the genes encoding an enzyme with homology to Coo membrane-bound hydrogenase. From this result, we infer that Coo hydrogenase plays an important role in D. vulgaris growth on lactate plus sulfate. These observations along with those reported previously have been combined in a model showing dual pathways of electrons from the oxidation of both lactate and pyruvate during sulfate respiration. Continuing genetic and biochemical analyses of key genes in Desulfovibrio strains will allow further clarification of a general model for sulfate respiration. © 2011 Keller and Wall.


Oh J.,Stanford University | Fung E.,Stanford University | Price M.N.,Lawrence Berkeley National Laboratory | Price M.N.,Virtual Institute for Microbial Stress and Survival | And 9 more authors.
Nucleic Acids Research | Year: 2010

Systems-level analyses of non-model microorganisms are limited by the existence of numerous uncharacterized genes and a corresponding overreliance on automated computational annotations. One solution to this challenge is to disrupt gene function using DNA tag technology, which has been highly successful in parallelizing reverse genetics in Saccharomyces cerevisiae and has led to discoveries in gene function, genetic interactions and drug mechanism of action. To extend the yeast DNA tag methodology to a wide variety of microorganisms and applications, we have created a universal, sequence-verified TagModule collection. A hallmark of the 4280 TagModules is that they are cloned into a Gateway entry vector, thus facilitating rapid transfer to any compatible genetic system. Here, we describe the application of the TagModules to rapidly generate tagged mutants by transposon mutagenesis in the metal-reducing bacterium Shewanella oneidensis MR-1 and the pathogenic yeast Candida albicans. Our results demonstrate the optimal hybridization properties of the TagModule collection, the flexibility in applying the strategy to diverse microorganisms and the biological insights that can be gained from fitness profiling tagged mutant collections. The publicly available TagModule collection is a platform-independent resource for the functional genomics of a wide range of microbial systems in the post-genome era. © The Author(s) 2010. Published by Oxford University Press.


Oh J.,Stanford University | Fung E.,Stanford University | Schlecht U.,Stanford University | Davis R.W.,Stanford University | And 7 more authors.
PLoS Pathogens | Year: 2010

Candida albicans is the most common human fungal pathogen, causing infections that can be lethal in immunocompromised patients. Although Saccharomyces cerevisiae has been used as a model for C. albicans, it lacks C. albicans' diverse morphogenic forms and is primarily non-pathogenic. Comprehensive genetic analyses that have been instrumental for determining gene function in S. cerevisiae are hampered in C. albicans, due in part to limited resources to systematically assay phenotypes of lossof- function alleles. Here, we constructed and screened a library of 3633 tagged heterozygous transposon disruption mutants, using them in a competitive growth assay to examine nutrient- and drug-dependent haploinsufficiency. We identified 269 genes that were haploinsufficient in four growth conditions, the majority of which were condition-specific. These screens identified two new genes necessary for filamentous growth as well as ten genes that function in essential processes. We also screened 57 chemically diverse compounds that more potently inhibited growth of C. albicans versus S. cerevisiae. For four of these compounds, we examined the genetic basis of this differential inhibition. Notably, Sec7p was identified as the target of brefeldin A in C. albicans screens, while S. cerevisiae screens with this compound failed to identify this target. We also uncovered a new C. albicans-specific target, Tfp1p, for the synthetic compound 0136-0228. These results highlight the value of haploinsufficiency screens directly in this pathogen for gene annotation and drug target identification. © 2010 Oh et al.


Price M.N.,Lawrence Berkeley National Laboratory | Price M.N.,Virtual Institute for Microbial Stress and Survival | Dehal P.S.,Lawrence Berkeley National Laboratory | Dehal P.S.,Virtual Institute for Microbial Stress and Survival | And 3 more authors.
PLoS ONE | Year: 2010

Background: We recently described FastTree, a tool for inferring phylogenies for alignments with up to hundreds of thousands of sequences. Here, we describe improvements to FastTree that improve its accuracy without sacrificing scalability. Methodology/Principal Findings: Where FastTree 1 used nearest-neighbor interchanges (NNIs) and the minimum-evolution criterion to improve the tree, FastTree 2 adds minimum-evolution subtree-pruning-regrafting (SPRs) and maximum-likelihood NNIs. FastTree 2 uses heuristics to restrict the search for better trees and estimates a rate of evolution for each site (the "CAT" approximation). Nevertheless, for both simulated and genuine alignments, FastTree 2 is slightly more accurate than a standard implementation of maximum-likelihood NNIs (PhyML 3 with default settings). Although FastTree 2 is not quite as accurate as methods that use maximum-likelihood SPRs, most of the splits that disagree are poorly supported, and for large alignments, FastTree 2 is 100-1,000 times faster. FastTree 2 inferred a topology and likelihood-based local support values for 237,882 distinct 16S ribosomal RNAs on a desktop computer in 22 hours and 5.8 gigabytes of memory. Conclusions/Significance: FastTree 2 allows the inference of maximum-likelihood phylogenies for huge alignments. FastTree 2 is freely available at http://www.microbesonline.org/fasttree. © 2010 Price et al.


Huang Y.W.,Lawrence Berkeley National Laboratory | Huang Y.W.,Virtual Institute for Microbial Stress and Survival | Arkin A.P.,Lawrence Berkeley National Laboratory | Arkin A.P.,Virtual Institute for Microbial Stress and Survival | And 3 more authors.
Bioinformatics | Year: 2011

Summary: Workflow Information Storage Toolkit (WIST) is a set of application programming interfaces and web applications that allow for the rapid development of customized laboratory information management systems (LIMS). WIST provides common LIMS input components, and allows them to be arranged and configured using a flexible language that specifies each component's visual and semantic characteristics. WIST includes a complete set of web applications for adding, editing and viewing data, as well as a powerful setup tool that can build new LIMS modules by analyzing existing database schema. © The Author(s) 2011. Published by Oxford University Press.

Loading Virtual Institute for Microbial Stress and Survival collaborators
Loading Virtual Institute for Microbial Stress and Survival collaborators