Sassari, Italy
Sassari, Italy

Time filter

Source Type

Lori F.,ViroStatics srl | de Forni D.,ViroStatics srl | Katabira E.,Makerere Medical School | Baev D.,ViroStatics srl | And 6 more authors.
PLoS ONE | Year: 2012

Background: A new class of antiretrovirals, AntiViral-HyperActivation Limiting Therapeutics (AV-HALTs), has been proposed as a disease-modifying therapy to both reduce Human Immunodeficiency Virus Type 1 (HIV-1) RNA levels and the excessive immune activation now recognized as the major driver of not only the continual loss of CD4+ T cells and progression to Acquired Immunodeficiency Syndrome (AIDS), but also of the emergence of both AIDS-defining and non-AIDS events that negatively impact upon morbidity and mortality despite successful (ie, fully suppressive) therapy. VS411, the first-in-class AV-HALT, combined low-dose, slow-release didanosine with low-dose hydroxycarbamide to accomplish both objectives with a favorable toxicity profile during short-term administration. Five dose combinations were administered as VS411 to test the AV-HALT Proof-of-Concept in HIV-1-infected subjects. Methods: Multinational, double-blind, 28-day Phase 2a dose-ranging Proof-of-Concept study of antiviral activity, immunological parameters, safety, and genotypic resistance in 58 evaluable antiretroviral-naïve HIV-1-infected adults. Randomization and allocation to study arms were carried out by a central computer system. Results were analyzed by ANOVA, Kruskal-Wallis, ANCOVA, and two-tailed paired t tests. Results: VS411 was well-tolerated, produced significant reductions of HIV-1 RNA levels, increased CD4+ T cell counts, and led to significant, rapid, unprecedented reductions of immune activation markers after 28 days despite incomplete viral suppression and without inhibiting HIV-1-specific immune responses. The didanosine 200 mg/HC 900 mg once-daily formulation demonstrated the greatest antiviral efficacy (HIV-1 RNA: -1.47 log10 copies/mL; CD4+ T cell count: +135 cells/mm3) and fewest adverse events. Conclusions: VS411 successfully established the Proof-of-Concept that AV-HALTs can combine antiviral efficacy with rapid, potentially beneficial reductions in the excessive immune system activation associated with HIV-1 disease. Rapid reductions in markers of immune system hyperactivation and cellular proliferation were obtained despite the fact that VS411 did not attain maximal suppression of HIV RNA, suggesting this effect was due to the HALT component. Trial Registration: ITEudraCT 2007-002460-98. © 2012 Lori et al.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2013.2.3.1-1 | Award Amount: 7.51M | Year: 2013

AIDS is one of the most serious pandemic diseases of the modern era. Although current therapies based on targeting key processes of the HIV replication cycle are potent and selective, several clinical failures are recorded due to the emergence of drug resistance. Hence, there is an urgent need for novel drugs and alternative therapeutic strategies. The objective of the THINPAD proposal is to discover and develop novel anti-HIV agents targeting the HIV nucleocapsid protein(NC), which is one of the most conserved sequence within HIV strains and is highly required for HIV replication, being therefore a primary target to overcome antiretroviral drug-resistance. The proposal originates from the successful FP6 TRIoH project and presents a multidisciplinary approach to develop anti-HIV drugs, ready for early clinical trials, that could be resistant to viral mutation since targeting a highly conserved sequence. The consortium consists of experts in the anti-HIV field which have an extensive expertise in targeting NC. Partner 1 has studied the NC dynamics and discovered small molecule NC modulators by in silico approaches. Partner 2 has developed biophysical methods to monitor the NC functions and the interaction with small molecules. Partner 3 developed a complete approach of biochemistry-, retrovirology- and microscopy-based techniques to monitor NC during HIV assembly, maturation and reverse transcription. Partner 4 is a SME founded by scientists who participated in the development of Raltegravir, which will have a leading role in the project together with Partner 5 (SME) by driving the discovery phase and pre-clinical investigation, favouring the translation of results into innovative applications for health. It is worth noting that the consortium already possesses small molecules endowed with low-micromolar inhibitory activity in cell against HIV and active against resistant strains. Notably, these molecules interact with the NC but not with the usual anti-HIV targets


Toke E.R.,Genetic Immunity Kft | Toke E.R.,EMMUNITY Inc | Lorincz O.,Genetic Immunity Kft | Lorincz O.,EMMUNITY Inc | And 25 more authors.
Gene Therapy | Year: 2014

There is no clinically available cancer immunotherapy that exploits Langerhans cells (LCs), the epidermal precursors of dendritic cells (DCs) that are the natural agent of antigen delivery. We developed a DNA formulation with a polymer and obtained synthetic 'pathogen-like' nanoparticles that preferentially targeted LCs in epidermal cultures. These nanoparticles applied topically under a patch-elicited robust immune responses in human subjects. To demonstrate the mechanism of action of this novel vaccination strategy in live animals, we assembled a high-resolution two-photon laser scanning-microscope. Nanoparticles applied on the native skin poorly penetrated and poorly induced LC motility. The combination of nanoparticle administration and skin treatment was essential both for efficient loading the vaccine into the epidermis and for potent activation of the LCs to migrate into the lymph nodes. LCs in the epidermis picked up nanoparticles and accumulated them in the nuclear region demonstrating an effective nuclear DNA delivery in vivo. Tissue distribution studies revealed that the majority of the DNA was targeted to the lymph nodes. Preclinical toxicity of the LC-targeting DNA vaccine was limited to mild and transient local erythema caused by the skin treatment. This novel, clinically proven LC-targeting DNA vaccine platform technology broadens the options on DC-targeting vaccines to generate therapeutic immunity against cancer. © 2014 Macmillan Publishers Limited.


Lori F.,ViroStatics Srl
Expert Review of Vaccines | Year: 2011

The HIV global pandemic continues to rage with over 33 million people living with the disease. Although multidrug therapy has improved the prognosis for those infected by the virus, it has not eradicated the infection. Immunological therapies, including therapeutic vaccines, are needed to supplement drug therapy in the search for a 'functional cure' for HIV. DermaVir (Genetic Immunity Kft, Budapest, Hungary and McLean, Virginia, USA), an experimental HIV/AIDS therapeutic vaccine, combines three key elements of rational therapeutic vaccine design: a single plasmid DNA (pDNA) immunogen expressing 15 HIV antigens, a synthetic pDNA nanomedicine formulation and a dendritic cell-targeting topical-vaccine administration. DermaVir's novel mechanism of action, natural transport by epidermal Langerhans cells to the lymph nodes to express the pDNA-encoded HIV antigens and induce precursor/memory T cells with high proliferation capacity, has been consistently demonstrated in mouse, rabbit, primate and human subjects. Safety, immunogenicity and preliminary efficacy of DermaVir have been clinically demonstrated in HIV-infected human subjects. The DermaVir technology platform for dendritic cell-based therapeutic vaccination might offer a new treatment paradigm for cancer and infectious diseases. © 2011 Expert Reviews Ltd.


Somogyi E.,Genetic Immunity | Xu J.,Research Institute for Genetic and Human Therapy | Xu J.,Fudan University | Gudics A.,Genetic Immunity | And 4 more authors.
Vaccine | Year: 2011

We describe here a single plasmid DNA immunogen representing the broadest antigen repertoire among HIV vaccine candidates. This pDNA was "ANTIGENeered" for the regulated expression of thirteen complete and two non-functional HIV protein antigens. These proteins self assemble into complex virus-like particles (VLP+). Multiple irreversible safety features were introduced by genetic modifications including the complete impairment of integration, reverse transcription, the function of Nef and the 3'LTR. Epitope analysis predicted that the pDNA-derived protein repertoire can potentially present over 3000 T cell epitopes. However, the expressed antigens have different potential to induce HIV-specific CD4+ and CD8+ T cells supporting our hypothesis that HIV vaccines should contain all possible regulatory and structural proteins. This immunogen is the active pharmaceutical ingredient of DermaVir, a therapeutic vaccine product candidate that recently successfully completed Phase II clinical trials and meets the safety, immunogenicity and cost requirements of an HIV vaccine. © 2010 Elsevier Ltd.


Gudmundsdotter L.,Swedish Institute for Infectious Disease Control | Wahren B.,Swedish Institute for Infectious Disease Control | Haller B.K.,Karolinska Institutet | Boberg A.,Swedish Institute for Infectious Disease Control | And 10 more authors.
Vaccine | Year: 2011

Immunotherapy in patients with HIV-1 infection aims to restore and broaden immunological competence, reduce viral load and thereby permit longer periods without combined antiretroviral treatment (cART). Twelve HIV-1-infected patients on cART were immunized on the skin with DNA plasmids containing genes of several HIV-1 subtypes with or without the addition of hydroxyurea (HU), or with placebo. The mean net gain of HIV-specific CD8+ T cell responses were higher and broader in the HIV DNA vaccine groups compared to non-vaccinated individuals (p< 0.05). The vaccine-induced immune responses per se had no direct effect on viral replication. In all patients combined, including placebo, the viral set point after a final structured therapy interruption (STI) was lower than prior to initiation of cART (p= 0.003). Nadir CD4 levels appeared to strongly influence the post-STI viral titers. After the sixth immunization or placebo, patients could stay off cART for a median time of 15 months. The study shows that HIV DNA immunization induces broader and higher magnitudes of HIV-specific immune responses compared to structured therapy interruptions alone. Although compromised by small numbers of patients, the study also demonstrates that well-monitored STI may safely function as an immunological read out of HIV vaccine efficacy. © 2011 Elsevier Ltd.


PubMed | ViroStatics srl
Type: Journal Article | Journal: Expert review of vaccines | Year: 2011

The HIV global pandemic continues to rage with over 33 million people living with the disease. Although multidrug therapy has improved the prognosis for those infected by the virus, it has not eradicated the infection. Immunological therapies, including therapeutic vaccines, are needed to supplement drug therapy in the search for a functional cure for HIV. DermaVir (Genetic Immunity Kft, Budapest, Hungary and McLean, Virginia, USA), an experimental HIV/AIDS therapeutic vaccine, combines three key elements of rational therapeutic vaccine design: a single plasmid DNA (pDNA) immunogen expressing 15 HIV antigens, a synthetic pDNA nanomedicine formulation and a dendritic cell-targeting topical-vaccine administration. DermaVirs novel mechanism of action, natural transport by epidermal Langerhans cells to the lymph nodes to express the pDNA-encoded HIV antigens and induce precursor/memory T cells with high proliferation capacity, has been consistently demonstrated in mouse, rabbit, primate and human subjects. Safety, immunogenicity and preliminary efficacy of DermaVir have been clinically demonstrated in HIV-infected human subjects. The DermaVir technology platform for dendritic cell-based therapeutic vaccination might offer a new treatment paradigm for cancer and infectious diseases.


A new class of antiretrovirals, AntiViral-HyperActivation Limiting Therapeutics (AV-HALTs), has been proposed as a disease-modifying therapy to both reduce Human Immunodeficiency Virus Type 1 (HIV-1) RNA levels and the excessive immune activation now recognized as the major driver of not only the continual loss of CD4(+) T cells and progression to Acquired Immunodeficiency Syndrome (AIDS), but also of the emergence of both AIDS-defining and non-AIDS events that negatively impact upon morbidity and mortality despite successful (ie, fully suppressive) therapy. VS411, the first-in-class AV-HALT, combined low-dose, slow-release didanosine with low-dose hydroxycarbamide to accomplish both objectives with a favorable toxicity profile during short-term administration. Five dose combinations were administered as VS411 to test the AV-HALT Proof-of-Concept in HIV-1-infected subjects.Multinational, double-blind, 28-day Phase 2a dose-ranging Proof-of-Concept study of antiviral activity, immunological parameters, safety, and genotypic resistance in 58 evaluable antiretroviral-nave HIV-1-infected adults. Randomization and allocation to study arms were carried out by a central computer system. Results were analyzed by ANOVA, Kruskal-Wallis, ANCOVA, and two-tailed paired t tests.VS411 was well-tolerated, produced significant reductions of HIV-1 RNA levels, increased CD4(+) T cell counts, and led to significant, rapid, unprecedented reductions of immune activation markers after 28 days despite incomplete viral suppression and without inhibiting HIV-1-specific immune responses. The didanosine 200 mg/HC 900 mg once-daily formulation demonstrated the greatest antiviral efficacy (HIV-1 RNA: -1.47 log(10) copies/mL; CD4(+) T cell count: +135 cells/mm(3)) and fewest adverse events.VS411 successfully established the Proof-of-Concept that AV-HALTs can combine antiviral efficacy with rapid, potentially beneficial reductions in the excessive immune system activation associated with HIV-1 disease. Rapid reductions in markers of immune system hyperactivation and cellular proliferation were obtained despite the fact that VS411 did not attain maximal suppression of HIV RNA, suggesting this effect was due to the HALT component.ITEudraCT 2007-002460-98.

Loading ViroStatics Srl collaborators
Loading ViroStatics Srl collaborators