Time filter

Source Type

Blacksburg, United States

Gopaul K.K.,Veterinary Laboratories Agency | Sells J.,Veterinary Laboratories Agency | Bricker B.J.,Bacterial Diseases of Livestock | Crasta O.R.,Virginia Bioinformatics Institute | Whatmore A.M.,Veterinary Laboratories Agency
Journal of Clinical Microbiology | Year: 2010

The reliable differentiation of live Brucella vaccine strains from field isolates is an important element in brucellosis control programs. We describe the design, validation, and implementation of a novel single nucleotide polymorphism (SNP)-based typing platform that offers a rapid, reliable, and robust tool to achieve this with improved diagnostic accuracy compared to existing molecular tests. Furthermore, the assays described are designed such that they supplement, and can be run as an intrinsic part of, a previously described assay identifying Brucella isolates to the species level (K. K. Gopaul, C. J. Smith, M. S. Koylass, and A. M. Whatmore, BMC Microbiol. 8:86), giving a comprehensive molecular typing platform. Copyright © 2010, American Society for Microbiology. All Rights Reserved. Source

Zook J.M.,U.S. National Institute of Standards and Technology | Chapman B.,Harvard University | Wang J.,Arpeggi Inc. | Mittelman D.,Arpeggi Inc. | And 4 more authors.
Nature Biotechnology | Year: 2014

Clinical adoption of human genome sequencing requires methods that output genotypes with known accuracy at millions or billions of positions across a genome. Because of substantial discordance among calls made by existing sequencing methods and algorithms, there is a need for a highly accurate set of genotypes across a genome that can be used as a benchmark. Here we present methods to make high-confidence, single-nucleotide polymorphism (SNP), indel and homozygous reference genotype calls for NA12878, the pilot genome for the Genome in a Bottle Consortium. We minimize bias toward any method by integrating and arbitrating between 14 data sets from five sequencing technologies, seven read mappers and three variant callers. We identify regions for which no confident genotype call could be made, and classify them into different categories based on reasons for uncertainty. Our genotype calls are publicly available on the Genome Comparison and Analytic Testing website to enable real-time benchmarking of any method. © 2014 Nature America, Inc. Source

Stewart J.E.,Washington State University | Stewart J.E.,University of Georgia | Timmer L.W.,University of Florida | Lawrence C.B.,Virginia Bioinformatics Institute | And 2 more authors.
BMC Evolutionary Biology | Year: 2014

Background: Traditional morphological and biological species concepts are difficult to apply to closely related, asexual taxa because of the lack of an active sexual phase and paucity of morphological characters. Phylogenetic species concepts such as genealogical concordance phylogenetic species recognition (GCPSR) have been extensively used; however, methods that incorporate gene tree uncertainty into species recognition may more accurately and objectively delineate species. Using a worldwide sample of Alternaria alternata sensu lato, causal agent of citrus brown spot, the evolutionary histories of four nuclear loci including an endo-polygalacturonase gene, two anonymous loci, and one microsatellite flanking region were estimated using the coalescent. Species boundaries were estimated using several approaches including those that incorporate uncertainty in gene genealogies when lineage sorting and non-reciprocal monophyly of gene trees is common. Results: Coalescent analyses revealed three phylogenetic lineages strongly influenced by incomplete lineage sorting and recombination. Divergence of the citrus 2 lineage from the citrus 1 and citrus 3 lineages was supported at most loci. A consensus of species tree estimation methods supported two species of Alternaria causing citrus brown spot worldwide. Based on substitution rates at the endo-polygalacturonase locus, divergence of the citrus 2 and the 1 and 3 lineages was estimated to have occurred at least 5, 400 years before present, predating the human-mediated movement of citrus and associated pathogens out of SE Asia. Conclusions: The number of Alternaria species identified as causing brown spot of citrus worldwide using morphological criteria has been overestimated. Little support was found for most of these morphospecies using quantitative species recognition approaches. Correct species delimitation of plant-pathogenic fungi is critical for understanding the evolution of pathogenicity, introductions of pathogens to new areas, and for regulating the movement of pathogens to enforce quarantines. This research shows that multilocus phylogenetic methods that allow for recombination and incomplete lineage sorting can be useful for the quantitative delimitation of asexual species that are morphologically indistinguishable. Two phylogenetic species of Alternaria were identified as causing citrus brown spot worldwide. Further research is needed to determine how these species were introduced worldwide, how they differ phenotypically and how these species are maintained. © 2014Stewart et al.; licensee BioMed Central Ltd. Source

Davis B.K.,Franklin And Marshall College | Philipson C.,Virginia Bioinformatics Institute | Hontecillas R.,Virginia Bioinformatics Institute | Eden K.,Virginia Bioinformatics Institute | And 3 more authors.
Inflammatory Bowel Diseases | Year: 2014

Pattern recognition receptors are essential mediators of host defense and inflammation in the gastrointestinal system. Recent data have revealed that toll-like receptors and nucleotide-binding domain and leucine-rich repeat-containing proteins (NLRs) function to maintain homeostasis between the host microbiome and mucosal immunity. The NLR proteins are a diverse class of cytoplasmic pattern recognition receptors. In humans, only about half of the identified NLRs have been adequately characterized. The majority of well-characterized NLRs participate in the formation of a multiprotein complex, termed the inflammasome, which is responsible for the maturation of interleukin-1b and interleukin-18. However, recent observations have also uncovered the presence of a novel subgroup of NLRs that function as positive or negative regulators of inflammation through modulating critical signaling pathways, including NF-kB. Dysregulation of specific NLRs from both proinflammatory and inhibitory subgroups have been associated with the development of inflammatory bowel disease (IBD) in genetically susceptible human populations. Our own preliminary retrospective data mining efforts have identified a diverse range of NLRs that are significantly altered at the messenger RNA level in colons from patients with IBD. Likewise, studies using genetically modified mouse strains have revealed that multiple NLR family members have the potential to dramatically modulate the immune response during IBD. Targeting NLR signaling represents a promising and novel therapeutic strategy. However, significant effort is necessary to translate the current understanding of NLR biology into effective therapies. Copyright © 2014 Crohn's & Colitis Foundation of America, Inc. Source

Sun D.,University of Virginia | Lee Y.S.,University of Virginia | Malhotra A.,University of Virginia | Kim H.K.,University of Virginia | And 5 more authors.
Cancer Research | Year: 2011

MicroRNAs (miRNA) have been globally profiled in cancers but there tends to be poor agreement between studies including in the same cancers. In addition, few putative miRNA targets have been validated. To overcome the lack of reproducibility, we profiled miRNAs by next generation sequencing and locked nucleic acid miRNA microarrays and verified concordant changes by quantitative RT-PCR. Notably, miR-125b and the miR-99 family members miR-99a, -99b, and -100 were downregulated in all assays in advanced prostate cancer cell lines relative to the parental cell lines from which they were derived. All four miRNAs were also downregulated in human prostate tumor tissue compared with normal prostate. Transfection of miR-99a, -99b, or -100 inhibited the growth of prostate cancer cells and decreased the expression of prostate-specific antigen (PSA), suggesting potential roles as tumor suppressors in this setting. To identify targets of these miRNAs, we combined computational prediction of potential targets with experimental validation by microarray and polyribosomal loading analysis. Three direct targets of the miR-99 family that were validated in this manner were the chromatin-remodeling factors SMARCA5 and SMARCD1 and the growth regulatory kinase mTOR. We determined that PSA is posttranscriptionally regulated by the miR-99 family members, at least partially, by repression of SMARCA5. Together, our findings suggest key functions and targets of miR-99 family members in prostate cancer suppression and prognosis. ©2011 AACR. Source

Discover hidden collaborations