Time filter

Source Type

Torres-Ruiz R.,Viral Vector Technical Unit | Rodriguez-Perales S.,Molecular Cytogenetics Group
International Journal of Molecular Sciences | Year: 2015

The cancer-modelling field is now experiencing a conversion with the recent emergence of the RNA-programmable CRISPR-Cas9 system, a flexible methodology to produce essentially any desired modification in the genome. Cancer is a multistep process that involves many genetic mutations and other genome rearrangements. Despite their importance, it is difficult to recapitulate the degree of genetic complexity found in patient tumors. The CRISPR-Cas9 system for genome editing has been proven as a robust technology that makes it possible to generate cellular and animal models that recapitulate those cooperative alterations rapidly and at low cost. In this review, we will discuss the innovative applications of the CRISPR-Cas9 system to generate new models, providing a new way to interrogate the development and progression of cancers. © 2015 by the authors; licensee MDPI, Basel, Switzerland. Source

Rodriguez-Perales S.,Molecular Cytogenetics Group | Torres-Ruiz R.,Viral Vector Technical Unit | Suela J.,Molecular Cytogenetics Group | Acquadro F.,Molecular Cytogenetics Group | And 5 more authors.
Oncogene | Year: 2016

We have identified a new t(1;21)(p32;q22) chromosomal translocation in a MDS/AML patient that results in expression of an aberrant C-terminally truncated RUNX1 protein lacking several regulatory domains. As similar truncated RUNX1 proteins are generated by genetic aberrations including chromosomal translocations and point mutations, we used the t(1;21)(p32;q22) chromosomal translocation as a model to explore whether C-terminally truncated RUNX1 proteins trigger effects similar to those induced by well-characterized leukemogenic RUNX1 fusion genes. In vitro analysis of transduced human hematopoietic/progenitor stem cells showed that truncated RUNX1 proteins increase proliferation and self-renewal and disrupt the differentiation program by interfering with RUNX1b. These effects are similar to but milder than those induced by the RUNX1/ETO fusion protein. GSEA analysis confirmed similar altered gene expression patterns in the truncated RUNX1 and RUNX1/ETO models, with both models showing alterations in genes involved in self-renewal and leukemogenesis, including homeobox genes, primitive erythroid genes and leukemogenic transcription factors. We propose that C-terminally truncated RUNX1 proteins can contribute to leukemogenesis in a similar way to RUNX1 fusion genes but through a milder phenotype. © 2016 Macmillan Publishers Limited. Source

Torres R.,Viral Vector Technical Unit | Garcia A.,Viral Vector Technical Unit | Paya M.,Viral Vector Technical Unit | Paya M.,Instituto Nacional Of Toxicologia Y Ciencias Forenses | Ramirez J.C.,Viral Vector Technical Unit
PLoS ONE | Year: 2011

Recombinase mediated cassette exchange (RMCE) is a two-step process leading to genetic modification in a specific genomic target sequence. The process involves insertion of a docking genetic cassette in the genome followed by DNA transfer of a second cassette flanked by compatible recombination signals and expression of the recombinase. Major technical drawbacks are cell viability upon transfection, toxicity of the enzyme, and the ability to target efficiently cell types of different origins. To overcome such drawbacks, we developed an RMCE assay that uses an integrase-deficient lentivirus (IDLV) vector in the second step combined with promoterless trapping of double selectable markers. Additionally, recombinase expression is self-limiting as a result of the exchangeable reaction, thus avoiding toxicity. Our approach provides proof-of-principle of a simple and novel strategy with expected wide applicability modelled on a human cell line with randomly integrated copies of a genetic landing pad. This strategy does not present foreseeable limitations for application to other cell systems modified by homologous recombination. Safety, efficiency, and simplicity are the major advantages of our system, which can be applied in low-to-medium throughput strategies for screening of cDNAs, non-coding RNAs during functional genomic studies, and drug screening. © 2011 Torres et al. Source

Discover hidden collaborations