Wine and Vine Research Institute of the Agricultural Research Council

Stellenbosch, South Africa

Wine and Vine Research Institute of the Agricultural Research Council

Stellenbosch, South Africa
SEARCH FILTERS
Time filter
Source Type

Allderman L.A.,Wine and Vine Research Institute of the Agricultural Research Council | Steyn W.J.,Stellenbosch University | Cook N.C.,Deciduous Fruit Producers Trust Research
South African Journal of Plant and Soil | Year: 2011

Elgin (34°S, 19°E; 305 m.a.s.l.), typical of South African apple growing regions, accumulates 745 Utah Chill Units (CU) p.a. The chilling requirement of'Golden Delicious' apple (Malus x domestica Borkh.) is c.a. 1100 CU. Consequently, the chilling requirement is not satisfied and delayed foliation is common. The aim of this study was to use plant growth regulators (PGR's) to manipulate the progression of dormancy in order to reduce the chilling requirement of 'Golden Delicious' shoots in mature commercial orchards. A trial was conducted in a commercial orchard in Elgin during the winters of 2004, 2006 and 2007. To advance the onset of dormancy, 250 mgl -1 abscisic acid (ABA) was sprayed several times during April and May of 2004 and 2006. To induce a shallower state of dormancy, cytokinins were applied during April and May of 2006 and 2007. Benzyl adenine (BA) was applied at concentrations between 250 and 1000 mgl -1 and forchorfenuron (CPPU) at 15 mgl -1 Progression of dormancy was assessed by harvesting shoots every 2-3 weeks from initial spray date until commercial rest breaking agents were applied in the orchard. The time interval for 50% of the shoots to exhibit budburst under controlled conditions was used as a parameter for depth of dormancy. Although shoots were sprayed on c.a. the same calendar dates each year and before any significant CU had accumulated, the physiological state of the buds at application varied from shallow to deep dormancy depending on the season. Therefore calendar dates were not a good criteria for spray applications and CU accumulation was not a prerequisite for the onset of dormancy. PGR's altered the dormancy progression of'Golden Delicious' shoots. However, their efficacy was dependant on the dormancy status of the buds at the time of application. Furthermore, the effect was not sustainable. The trees appeared to "normalize" after a short period of time and consequently the PGRs had no effect on the dormancy release or budburst the following spring.


Campoy J.A.,CSIC - Center of Edafology and Applied Biology of the Segura | Ruiz D.,CSIC - Center of Edafology and Applied Biology of the Segura | Cook N.,Deciduous Fruit Producers Trust Research | Allderman L.,Wine and Vine Research Institute of the Agricultural Research Council | Egea J.,CSIC - Center of Edafology and Applied Biology of the Segura
South African Journal of Botany | Year: 2011

The aim of this study was to determine the bud dormancy progression in apricot at different latitudes and altitudes. Six locations in regions with a Mediterranean climate in South Africa (SA) and Spain were chosen. The study was carried out during two consecutive years, 2007 and 2008, in SA and results were compared to those obtained in Spain in 2008. Locations ranged from low-chill areas, such as Ladismith and Villiersdorp in SA and Campotéjar in Spain, to high-chill areas, such as Ceres in SA and Barranda in Spain. A number of apricot cultivars comprising the range of chilling requirements in both countries were selected. In addition, a second, parallel study was performed to evaluate the paradormancy progression in 'Palsteyn' (SA) and 'Rojo Pasión' (Spain). Deeper dormancy was not observed in high-chill cultivars located in cold areas than in low-chill cultivars in warm areas. However, low-chill cultivars located in warm areas entered and released from dormancy earlier than high chill cultivars in warm areas. Thus, a clinal variation in dormancy progression under warm temperatures in apricot cultivars is suggested. The role of photoperiod and minimum temperatures is proposed to have a key role in dormancy onset. Paradoxically, an earlier maximum depth of dormancy was found in those areas with higher minimum temperatures at the end of summer. Before the beginning of winter, all cultivars showed an important increase of budburst rate, which indicated the end of endodormancy. Afterwards an ecodormancy period followed during winter, while chilling continued to accumulate. These results contrast with the assumed concept of the breaking of dormancy through chilling accumulation during winter and suggest a possible mediation by photoperiod in overcoming of dormancy. On the other hand, paradormancy exerted a reduction in budburst rate during dormancy entry, whereas decapitation increased the budburst rate throughout the dormant season, indicating interaction between different plant parts during this period. © 2010 SAAB.


Campoy J.A.,CSIC - Center of Edafology and Applied Biology of the Segura | Ruiz D.,CSIC - Center of Edafology and Applied Biology of the Segura | Cook N.,Deciduous Fruit Producers Trust Research fruitgro | Allderman L.,Wine and Vine Research Institute of the Agricultural Research Council | Egea J.,CSIC - Center of Edafology and Applied Biology of the Segura
Scientia Horticulturae | Year: 2011

The efficiency of different temperature cycles in inducing budburst of one-year-old shoots of the apricot cultivar 'Palsteyn' from dormancy was evaluated. Three replications of shoots were collected during two consecutive years from adult trees, following the accumulation of different amounts of chilling in the field. Thereafter, shoots were exposed to different temperature cycles in growth chambers, for 60 days. The temperature treatments included a continuous temperature of 5 °C; daily temperature cycles of 19/5. h at 5/15 °C, at 5/20 °C, and at 5/25 °C; and the same temperature cycles for the remainder of the 60-day period, after pretreatment at 5 °C for 30 or 45 days. After the temperature treatments, shoots were forced at 25 °C until budburst. The mean time to budburst (MTB) (in days) of lateral vegetative, terminal vegetative and reproductive buds was evaluated. The efficiency of the different treatments was greatly influenced by the date on which shoots were cut. High temperatures had a more positive effect on the reduction of MTB when chilling accumulation had occurred in the field instead of the growth chamber. After partial chilling accumulation in the field, high temperatures (25 °C) combined with low temperatures are more efficient than cycles of moderate temperatures (15 or 20 °C) to induce an earlier budburst. In view of these results, a parallel accumulation of both chilling and heat requirements after partial chilling accumulation is suggested. The application of these results could assist in the development of more accurate models for the prediction of the overcoming of dormancy and blooming. © 2011 Elsevier B.V.

Loading Wine and Vine Research Institute of the Agricultural Research Council collaborators
Loading Wine and Vine Research Institute of the Agricultural Research Council collaborators