Cleveland, OH, United States
Cleveland, OH, United States

Time filter

Source Type

Systems and methods for tomographic reconstruction of an image include systems and methods for producing images from k-space data. A k-space data set of an imaged object is acquired using know k-space data acquisition systems and methods. A portion of the k-space data set is sampled so as to collect some portion of the k-space data. An image is then reconstructed from the collected portion of the k-space data set according to a convex optimization model.


A radio frequency coil is disclosed that is suitable for use with a magnetic resonance imaging apparatus. The radio frequency coil comprises first and second conductive loops connected electrically to each other by a plurality of conductive rungs. The conductive rungs each include a section that is relatively thin that will result in less attenuation to a radiation beam than other thicker sections of the rungs. Insulating regions are also disposed in areas of the radio frequency coil that are bound by adjacent rungs and the conductive loops. Portions of the insulating regions can be configured to provide a substantially similar amount of attenuation to the radiation beam as the relatively thin sections of the conductive rungs.


Patent
Viewray Inc. | Date: 2016-08-19

A magnetic resonance imaging (MRI) system includes a split magnet system having a pair of MRI magnet housings separated by gap. A pair of main MRI magnets are disposed within respective MRI magnet housings. A plurality of buttress assemblies are attached to the MRI magnet housings. Some or all of the buttress assemblies are provided with removable connections to the MRI magnet housings. This allows for partial disassembly of the MRI system for improved transport and maneuverability for relocating the MRI system. The MRI system can include a gantry in the gap for supporting a radiation therapy system. Also, the removably buttress assemblies can be used for housing conduits, such as electrical and fluid conduits, between the pair of MRI magnet housings.


Systems and methods for the delivery of linear accelerator radiotherapy in conjunction with magnetic resonance imaging in which components of a linear accelerator may be placed in shielding containers around a gantry, may be connected with RF waveguides, and may employ various systems and methods for magnetic and radio frequency shielding.


Patent
Viewray Inc. | Date: 2016-07-22

An ion chamber has a chamber having an interior volume. There is a first electrode and a second electrode in the chamber and separated by a gap. A collector electrode is positioned between the first electrode and the second electrode. The collector electrode is shaped to occlude a portion of the first electrode from the second electrode.


The subject matter described herein provides methods for developing an IMRT treatment plan for a radiotherapy system. In one aspect, the method can include providing initial treatment parameters. These parameters can include a number of isotopic beams, a transmission angle for each beam, a prescribed dose for a target, and dose volume histogram constraints. The method can further include determining an initial fluence map including one or more beamlets. The initial fluence map can specify a fluence value for each beamlet. The method can further include determining a delivery sequence for the fluence values in the initial fluence map. The delivery sequence can include one or more apertures formed by the leaves of a collimator. These apertures can have a specified size constrained to substantially less than a maximum size associated with the collimator, when the isotopic beam is near a critical structure. Related apparatus and systems are also described.


Systems and methods for delivery of radiotherapy in conjunction with magnetic resonance imaging in which various conductors, shields and shims may be used to solve issues occurring when radiation therapy equipment is placed in the vicinity of an magnetic resonance imaging system.


A radiation therapy system comprises a magnetic resonance imaging (MRI) system combined with an irradiation system, which can include one or more linear accelerators (linacs) that can emit respective radiation beams suitable for radiation therapy. The MRI system includes a split magnet system, comprising first and second main magnets separated by gap. A gantry is positioned in the gap between the main MRI magnets and supports the linac(s) of the irradiation system. The gantry is rotatable independently of the MRI system and can angularly reposition the linac(s). Shielding can also be provided in the form of magnetic and/or RF shielding. Magnetic shielding can be provided for shielding the linac(s) from the magnetic field generated by the MRI magnets. RF shielding can be provided for shielding the MRI system from RF radiation from the linac.


A radio frequency coil is disclosed that is suitable for use with a magnetic resonance imaging apparatus. The radio frequency coil comprises first and second conductive loops connected electrically to each other by a plurality of conductive rungs. The conductive rungs each include a section that is relatively thin that will result in less attenuation to a radiation beam than other thicker sections of the rungs. Insulating regions are also disposed in areas of the radio frequency coil that are bound by adjacent rungs and the conductive loops. Portions of the insulating regions can be configured to provide a substantially similar amount of attenuation to the radiation beam as the relatively thin sections of the conductive rungs.


Systems and methods for the delivery of linear accelerator radiotherapy in conjunction with magnetic resonance imaging in which components of a linear accelerator may be placed in shielding containers around a gantry, may be connected with RF waveguides, and may employ various systems and methods for magnetic and radio frequency shielding.

Loading Viewray Inc. collaborators
Loading Viewray Inc. collaborators