Vicuron Pharmaceuticals

Gerenzano, Italy

Vicuron Pharmaceuticals

Gerenzano, Italy

Time filter

Source Type

Research and Markets has announced the addition of the "Antibacterial Drug Resistance: Market Landscape, Challenges and Upcoming Opportunities, 2016-2026 " report to their offering. The "Antibacterial Drug Resistance: Market Landscape, Challenges and Upcoming Opportunities, 2016-2026" report provides an extensive study of the current landscape and the growing pipeline of new generation antibiotics targeting drug-resistant bacteria. As indicated earlier, owing to the over-prescription of antibiotics due to improper diagnosis, lack of adherence to proper dosage regimens, their widespread availability as over-the-counter (OTC) drugs, and overuse in agriculture and poultry farming, most antibiotics have been rendered ineffective. Moreover, there currently exists an expanding lag between the pace at which drug resistant bacteria evolve and the time taken for new drugs to reach the market. As a result, antibiotic drug resistance has escalated into a global threat. There are concerns that the lack of effective drugs in this domain may soon trigger the relapse of the pre-antibiotic era, in which individuals died due to day-to-day bacterial infections. According to certain studies, currently, an estimated 700,000 deaths annually are known to occur due to anti-microbial resistance worldwide. In future, the growing threat of antibiotic resistance is anticipated to prove to be more fatal than cancer. The current scenario depicts an urgent need for new antibiotics with novel mechanisms of action, having the ability to combat antibiotic resistance. The US and EU governments have amended their action plans and conducted many conferences to raise awareness about the situation among both experts in the domain and the general public. Such initiatives are addressed to support R&D strategies of companies engaged in the development of drugs to combat antibiotic resistance. Efforts are underway to assist drug developers in their clinical trial design issues, and even the simplification of regulatory pathways to expedite the time to market for such drugs. In addition, such initiatives endorse public-private partnerships in advancing scientific and clinical efforts in this domain, aid the setting up of surveillance programs to track the widespread use of antibiotics and the development of resistance, and track the growing economic burden due to this phenomenon as well. The new generation antibiotics pipeline comprises of several molecules that target infections caused by deadly pathogens classified under ESKAPE or as urgent threats by the CDC. Several start-ups have entered the market and undertaken various initiatives to develop novel antibiotics with unique mechanisms of action. - An overview of the current state of the market with respect to the key players involved, phase of development of pipeline products (clinical and preclinical/discovery), target classes of pathogens (Gram-negative versus Gram-positive), drug classes and key disease indications. In addition, we have included an insightful representation of the developer landscape, highlighting the geographical presence of key players in the industry. - Detailed profiles of approved drugs, as well as those in phase III of clinical development, highlighting information on clinical trials, their current status of development, recent developments and associated collaborations. - Insights on novel alternative therapies that are being explored/evaluated to target antibiotic resistant pathogenic bacteria; these include teixobactin, anti-microbial peptides, antisense antibacterials, quorum sensing inhibition, nano-metal based therapies and anti-biofilm agents. - Details on the most popular therapeutic areas, namely acute bacterial skin and skin structure infections (ABSSSIs), community-acquired pneumonia (CAP) Clostridium difficile infections (CDIs), complicated intra-abdominal infections (cIAIs), complicated urinary tract infections (cUTIs) and hospital-acquired pneumonia/ventilator-associated pneumonia (HAP/VAP). For each indication, we have provided a brief description of the disease, information on its epidemiology, available treatment plans and active comparator studies of approved drug candidates that are prescribed for the aforementioned indications. - An illustrative grid representation and a bulls-eye analysis of the pipeline molecules, based on their development stage, spectrum of activity and the key indications. - Future commercial potential of the market based on a detailed opportunity analysis, for the period between 2016 and 2026. The research, analysis and insights presented in this report include potential sales of approved antibiotics and those in late stages of development. 1. Preface 2. Executive Summary 3. Introduction 4. Antibiotic Drug Resistance: Development Pipeline and Market Landscape 5. Clinical Development Analysis and Key Comparator Studies 6. New Generation Antibiotics: Marketed Drugs 7. New Generation Antibiotics: Phase III Drugs 8. Emerging Therapies to Combat Antibiotic Resistance 9. Key Therapeutic Areas 10. Market Forecast and Opportunity Analysis 11. Conclusion 12. Interview Transcripts 13. Appendix 1: Tabulated Data 14. Appendix 2: List of Companies and Organization - AAIPharma Services - ABAC Therapeutics - ANTABIO - Abbott Laboratories - Abgentis - Absynth Biologics - Achaogen - Acino Holdings - Actavis - Actelion Pharmaceuticals - Adenium Biotech - Adimab - Aequor - AiCuris - Alaxia Pharma - Albany Molecular Research (AMRI) - Allecra Therapeutics - Allergan - Angelini - Antibio Tx - Antibiotic Adjuvant - Aphios - Appili Therapeutics - Arietis Pharma - Arpida - Arsanis - Assembly Biosciences - AstraZeneca - Austell Laboratories - Aventis Pharma - BKG Pharma - BUGWORKS - Basilea Pharmaceutica - Bayer Pharma - BioVersys - Biocidium Biopharmaceuticals - Biocon - Biosearch Italia - Biovertis - Blueberry Therapeutics - C3 Jian - Calixa Therapeutics - Cantab Anti-infectives - Cardiome Pharma - Cellceutix Corporation - Cempra - Cerexa - Clinigen Group - ContraFect - Crestone - Crystal Genomics - Cubist Pharmaceuticals - CyDex Pharmaceuticals - DSM Sinochem Pharmaceuticals - Da Volterra - Daiichi Sankyo - Debiopharm International - Deinove - Demuris - Discuva - Dong Wha Pharmaceuticals - Dong-A Pharmaceutical - Durata Therapeutics - Eli Lilly - Eligo Bioscience - EnBiotix - Entasis Therapeutics - Eurofarma Laboratórios - Evolva Holding - Evotec - Eydo Pharma - FOB Synthesis - Fedora Pharmaceuticals - Forest Laboratories - Fujisawa Pharmaceuticals - GSK - Galapagos - GangaGen - GeneWEAVE - Hikma Pharmaceuticals - IASO Pharma - iNtRON Biotechnology - Immuron - Indel Therapeutics - Institute of Metagenomics and Microbial Technologies (IMMT) - InterMune - Ionis Pharmaceuticals - Isis Pharmaceuticals - Janssen-Ortho - Japan Radio Company - Johnson & Johnson - Kyorin Pharmaceutical - LegoChem Biosciences - Ligand Pharmaceuticals - Lyndra - MGB Biopharma - Macrolide Pharmaceuticals - MarBiLeads - Matinas BioPharma - MedImmune - Meiji Seika Pharma - Melinta Therapeutics - MerLion Pharmaceuticals - Merck - MethylGene - Microbecide - MicuRx Pharmaceuticals - Mirati Therapeutics - Monash University - MorphoSys - Morphochem - Motif Bio - Mutabilis - Nabriva Therapeutics - Naicon - NanoSafe Coatings - Nanotherapeutics - Navigen Pharmaceuticals - Nemesis Bioscience - Nexgen Biosciences - Nobelex Biotech - Northeastern University - Northern Antibiotics - Nosopharm - NovaBiotics - NovaDigm Therapeutics - Novexel - NovoBiotic Pharmaceuticals - Nuprim - OJ-Bio - Optimer Biotechnology - Optimer Pharmaceuticals - Osel - PENDOPHARM - Pacific Beach BioSciences - Par Pharmaceutical - Paratek Pharmaceuticals - Patheon - Peninsula Pharmaceuticals - Peptilogics - Pfizer - Pherecydes Pharma - Phico Therapeutics - Polyphor - Procarta Biosystems - Pure Actives - R-Pharm - RQx Pharmaceuticals - RaQualia Pharma - Rebiotix - Redx Pharma - Rempex Pharmaceuticals - RexC Pharmaceuticals - Rib-X Pharmaceuticals - Roche - Rx3 Pharmaceuticals - Sanofi-Aventis - SciClone Pharmaceuticals - Sequella - Seres Therapeutics - SetLance - Shionogi - Shire - SinSa Labs - Specialised Therapeutics Australia - Spero Therapeutics - Sumitomo Dainippon Pharma (DSP) - Summit Therapeutics - Synamp Pharmaceuticals - Synthetic Biologics - TAXIS Pharmaceuticals - TaiGen Biotechnology - Takeda Pharmaceutical - Talon Pharmaceuticals - Targanta Therapeutics - TechnoPhage - Techulon - Tetraphase Pharmaceuticals - The Medicines Company - TheraBor Pharmaceuticals - Theravance Biopharma - Treat Systems - Trius Therapeutics - University of Michigan Life Sciences Institute - University of Pittsburgh - Vaxdyn - VenatoRx Pharmaceuticals - Versicor Pharmaceuticals - VibioSphen - Vicuron Pharmaceuticals - ViroPharma - Vitas Pharma - Vyome Biosciences - Wakunaga Pharmaceutical - Warner Chillcott - Wockhardt - Yamanouchi Pharmaceutical - Zavante Therapeutics For more information about this report visit http://www.researchandmarkets.com/research/gqv9bz/antibacterial


Dublin, Dec. 15, 2016 (GLOBE NEWSWIRE) -- Research and Markets has announced the addition of the "Antibacterial Drug Resistance: Market Landscape, Challenges and Upcoming Opportunities, 2016-2026 " report to their offering. The "Antibacterial Drug Resistance: Market Landscape, Challenges and Upcoming Opportunities, 2016-2026" report provides an extensive study of the current landscape and the growing pipeline of new generation antibiotics targeting drug-resistant bacteria. As indicated earlier, owing to the over-prescription of antibiotics due to improper diagnosis, lack of adherence to proper dosage regimens, their widespread availability as over-the-counter (OTC) drugs, and overuse in agriculture and poultry farming, most antibiotics have been rendered ineffective. Moreover, there currently exists an expanding lag between the pace at which drug resistant bacteria evolve and the time taken for new drugs to reach the market. As a result, antibiotic drug resistance has escalated into a global threat. There are concerns that the lack of effective drugs in this domain may soon trigger the relapse of the pre-antibiotic era, in which individuals died due to day-to-day bacterial infections. According to certain studies, currently, an estimated 700,000 deaths annually are known to occur due to anti-microbial resistance worldwide. In future, the growing threat of antibiotic resistance is anticipated to prove to be more fatal than cancer. The current scenario depicts an urgent need for new antibiotics with novel mechanisms of action, having the ability to combat antibiotic resistance. The US and EU governments have amended their action plans and conducted many conferences to raise awareness about the situation among both experts in the domain and the general public. Such initiatives are addressed to support R&D strategies of companies engaged in the development of drugs to combat antibiotic resistance. Efforts are underway to assist drug developers in their clinical trial design issues, and even the simplification of regulatory pathways to expedite the time to market for such drugs. In addition, such initiatives endorse public-private partnerships in advancing scientific and clinical efforts in this domain, aid the setting up of surveillance programs to track the widespread use of antibiotics and the development of resistance, and track the growing economic burden due to this phenomenon as well. The new generation antibiotics pipeline comprises of several molecules that target infections caused by deadly pathogens classified under ESKAPE or as urgent threats by the CDC. Several start-ups have entered the market and undertaken various initiatives to develop novel antibiotics with unique mechanisms of action. The report features: - An overview of the current state of the market with respect to the key players involved, phase of development of pipeline products (clinical and preclinical/discovery), target classes of pathogens (Gram-negative versus Gram-positive), drug classes and key disease indications. In addition, we have included an insightful representation of the developer landscape, highlighting the geographical presence of key players in the industry. - Detailed profiles of approved drugs, as well as those in phase III of clinical development, highlighting information on clinical trials, their current status of development, recent developments and associated collaborations. - Insights on novel alternative therapies that are being explored/evaluated to target antibiotic resistant pathogenic bacteria; these include teixobactin, anti-microbial peptides, antisense antibacterials, quorum sensing inhibition, nano-metal based therapies and anti-biofilm agents. - Details on the most popular therapeutic areas, namely acute bacterial skin and skin structure infections (ABSSSIs), community-acquired pneumonia (CAP) Clostridium difficile infections (CDIs), complicated intra-abdominal infections (cIAIs), complicated urinary tract infections (cUTIs) and hospital-acquired pneumonia/ventilator-associated pneumonia (HAP/VAP). For each indication, we have provided a brief description of the disease, information on its epidemiology, available treatment plans and active comparator studies of approved drug candidates that are prescribed for the aforementioned indications. - An illustrative grid representation and a bulls-eye analysis of the pipeline molecules, based on their development stage, spectrum of activity and the key indications. - Future commercial potential of the market based on a detailed opportunity analysis, for the period between 2016 and 2026. The research, analysis and insights presented in this report include potential sales of approved antibiotics and those in late stages of development. Key Topics Covered: 1. Preface 2. Executive Summary 3. Introduction 4. Antibiotic Drug Resistance: Development Pipeline and Market Landscape 5. Clinical Development Analysis and Key Comparator Studies 6. New Generation Antibiotics: Marketed Drugs 7. New Generation Antibiotics: Phase III Drugs 8. Emerging Therapies to Combat Antibiotic Resistance 9. Key Therapeutic Areas 10. Market Forecast and Opportunity Analysis 11. Conclusion 12. Interview Transcripts 13. Appendix 1: Tabulated Data 14. Appendix 2: List of Companies and Organization - AAIPharma Services - ABAC Therapeutics - ANTABIO - Abbott Laboratories - Abgentis - Absynth Biologics - Achaogen - Acino Holdings - Actavis - Actelion Pharmaceuticals - Adenium Biotech - Adimab - Aequor - AiCuris - Alaxia Pharma - Albany Molecular Research (AMRI) - Allecra Therapeutics - Allergan - Angelini - Antibio Tx - Antibiotic Adjuvant - Aphios - Appili Therapeutics - Arietis Pharma - Arpida - Arsanis - Assembly Biosciences - AstraZeneca - Austell Laboratories - Aventis Pharma - BKG Pharma - BUGWORKS - Basilea Pharmaceutica - Bayer Pharma - BioVersys - Biocidium Biopharmaceuticals - Biocon - Biosearch Italia - Biovertis - Blueberry Therapeutics - C3 Jian - Calixa Therapeutics - Cantab Anti-infectives - Cardiome Pharma - Cellceutix Corporation - Cempra - Cerexa - Clinigen Group - ContraFect - Crestone - Crystal Genomics - Cubist Pharmaceuticals - CyDex Pharmaceuticals - DSM Sinochem Pharmaceuticals - Da Volterra - Daiichi Sankyo - Debiopharm International - Deinove - Demuris - Discuva - Dong Wha Pharmaceuticals - Dong-A Pharmaceutical - Durata Therapeutics - Eli Lilly - Eligo Bioscience - EnBiotix - Entasis Therapeutics - Eurofarma Laboratórios - Evolva Holding - Evotec - Eydo Pharma - FOB Synthesis - Fedora Pharmaceuticals - Forest Laboratories - Fujisawa Pharmaceuticals - GSK - Galapagos - GangaGen - GeneWEAVE - Hikma Pharmaceuticals - IASO Pharma - iNtRON Biotechnology - Immuron - Indel Therapeutics - Institute of Metagenomics and Microbial Technologies (IMMT) - InterMune - Ionis Pharmaceuticals - Isis Pharmaceuticals - Janssen-Ortho - Japan Radio Company - Johnson & Johnson - Kyorin Pharmaceutical - LegoChem Biosciences - Ligand Pharmaceuticals - Lyndra - MGB Biopharma - Macrolide Pharmaceuticals - MarBiLeads - Matinas BioPharma - MedImmune - Meiji Seika Pharma - Melinta Therapeutics - MerLion Pharmaceuticals - Merck - MethylGene - Microbecide - MicuRx Pharmaceuticals - Mirati Therapeutics - Monash University - MorphoSys - Morphochem - Motif Bio - Mutabilis - Nabriva Therapeutics - Naicon - NanoSafe Coatings - Nanotherapeutics - Navigen Pharmaceuticals - Nemesis Bioscience - Nexgen Biosciences - Nobelex Biotech - Northeastern University - Northern Antibiotics - Nosopharm - NovaBiotics - NovaDigm Therapeutics - Novexel - NovoBiotic Pharmaceuticals - Nuprim - OJ-Bio - Optimer Biotechnology - Optimer Pharmaceuticals - Osel - PENDOPHARM - Pacific Beach BioSciences - Par Pharmaceutical - Paratek Pharmaceuticals - Patheon - Peninsula Pharmaceuticals - Peptilogics - Pfizer - Pherecydes Pharma - Phico Therapeutics - Polyphor - Procarta Biosystems - Pure Actives - R-Pharm - RQx Pharmaceuticals - RaQualia Pharma - Rebiotix - Redx Pharma - Rempex Pharmaceuticals - RexC Pharmaceuticals - Rib-X Pharmaceuticals - Roche - Rx3 Pharmaceuticals - Sanofi-Aventis - SciClone Pharmaceuticals - Sequella - Seres Therapeutics - SetLance - Shionogi - Shire - SinSa Labs - Specialised Therapeutics Australia - Spero Therapeutics - Sumitomo Dainippon Pharma (DSP) - Summit Therapeutics - Synamp Pharmaceuticals - Synthetic Biologics - TAXIS Pharmaceuticals - TaiGen Biotechnology - Takeda Pharmaceutical - Talon Pharmaceuticals - Targanta Therapeutics - TechnoPhage - Techulon - Tetraphase Pharmaceuticals - The Medicines Company - TheraBor Pharmaceuticals - Theravance Biopharma - Treat Systems - Trius Therapeutics - University of Michigan Life Sciences Institute - University of Pittsburgh - Vaxdyn - VenatoRx Pharmaceuticals - Versicor Pharmaceuticals - VibioSphen - Vicuron Pharmaceuticals - ViroPharma - Vitas Pharma - Vyome Biosciences - Wakunaga Pharmaceutical - Warner Chillcott - Wockhardt - Yamanouchi Pharmaceutical - Zavante Therapeutics For more information about this report visit http://www.researchandmarkets.com/research/gtt9s3/antibacterial


Maffioli S.I.,NAICONS | Fabbretti A.,University of Camerino | Brandi L.,University of Camerino | Savelsbergh A.,Witten/Herdecke University | And 5 more authors.
ACS Chemical Biology | Year: 2013

Upon high throughput screening of 6700 microbial fermentation extracts, we discovered a compound, designated orthoformimycin, capable of inhibiting protein synthesis in vitro with high efficiency. The molecule, whose structure was elucidated by chemical, spectrometric, and spectroscopic methods, contains an unusual orthoformate moiety (hence the name) and belongs to a novel class of translation inhibitors. This antibiotic does not affect any function of the 30S ribosomal subunit but binds to the 50S subunit causing inhibition of translation elongation and yielding polypeptide products of reduced length. Analysis by fluorescence stopped flow kinetics revealed that EF-G-dependent mRNA translocation is inhibited by orthoformimycin, whereas, surprisingly, translocation of the aminoacyl-tRNA seems to be unaffected. © 2013 American Chemical Society.


Sosio M.,Vicuron Pharmaceuticals | Sosio M.,KtedoGen Srl | Canavesi A.,Vicuron Pharmaceuticals | Canavesi A.,Sicor Srl | And 3 more authors.
Applied Microbiology and Biotechnology | Year: 2010

Nonomuraea strain ATCC 39727 produces the glycopeptide A40926, used for manufacturing dalbavancin, currently in advanced clinical trials. From the gene cluster involved in A40926 biosynthesis, a strain deleted in dbv23 was constructed. This mutant can produce only the glycopeptides lacking the O-linked acetyl residue at position 6 of the mannose moiety, while, under identical fermentation conditions, the wild-type strain produces mostly glycopeptides carrying an acetylated mannose. Furthermore, the total amount of glycopeptides produced by the mutant strain was found to be approximately twice that of the wild type. The reduced level of glycopeptides observed in the wild-type strain may be due to an inhibitory effect exerted by the acetylated compound on the biosynthesis of A40926. Indeed, spiking production cultures with ≥1 μg/ml of the acetylated glycopeptide inhibited A40926 production in the mutant strain. © 2010 Springer-Verlag.


Wishka D.G.,Pfizer | Kooistra J.,Syncom BV | Lewis J.G.,Vicuron Pharmaceuticals | O'Dowd H.,Vicuron Pharmaceuticals
Journal of Organic Chemistry | Year: 2011

To facilitate a drug discovery project, we needed to develop a robust asymmetric synthesis of (2S,5S)-5-substitutedazepane- 2-carboxylate derivatives. Two key requirements for the synthesis were flexibility for elaboration at C5 and suitability for large scale preparation. To this end we have successfully developed a scalable asymmetric synthesis of these derivatives that starts with known hydroxy-ketone 8. The key step features an oxidative cleavage of aza-bicyclo[3.2.2]nonene 14, which simultaneously generates the C2 and C5 substituents in a stereoselective manner. © 2011 American Chemical Society.


Jabes D.,NAICONS | Brunati C.,NAICONS | Candiani G.,Vicuron Pharmaceuticals | Riva S.,Vicuron Pharmaceuticals | And 6 more authors.
Antimicrobial Agents and Chemotherapy | Year: 2014

NAI-603 is a ramoplanin derivative designed to overcome the tolerability issues of the parent drug as a systemic agent. NAI-603 is highly active against aerobic and anaerobic Gram-positive bacteria, with MICs ranging from 0.008 to 8 μg/ml. MICs were not significantly affected by pH (range, 6 to 8), by inoculum up to 108 CFU/ml, or by addition of 50% human serum. Against staphylococci and enterococci, NAI-603 was rapidly bactericidal, with minimum bactericidal concentration (MBC)/MIC ratios never exceeding 4. The frequency of spontaneous resistance was low at 2x to 4x MIC (≤1 × 10-6 to ≤1 × 10-8) and below the detection limit (about ≤1 × 10-9) at 8x MIC. Serial subcultures at 0.5x MIC yielded at most an 8-fold increase in MICs. In a systemic infection induced by methicillin-resistant Staphylococcus aureus (MRSA), the 50% effective dose (ED50) of intravenous (i.v.) NAI-603 was 0.4 mg/kg, lower than that of oral (p.o.) linezolid (1.4 mg/kg) and subcutaneous (s.c.) teicoplanin (1.4 mg/kg) or vancomycin (0.6 mg/kg). In neutropenic mice infected with vancomycin-resistant enterococci (VRE), the ED50s for NAI-603 were 1.1 to 1.6 mg/kg i.v., compared to 0.5 mg/kg i.v. of ramoplanin. The bactericidal activity was confirmed in vivo in the rat granuloma pouch model induced by MRSA, where NAI-603, at 40 mg/kg i.v., induced about a 2- to 3-log10-reduction in viable bacteria in the exudates, which persisted for more than 72 h. The pharmacokinetic (PK) profiles of NAI-603 and ramoplanin at 20 mg/kg show similar half-lives (3.27 and 3.80 h, respectively) with the maximum concentration (Cmax) markedly higher for NAI-603 (207 μg/ml versus 79 μg/ml). The favorable pharmacological profile of NAI-603, coupled with the absence of local tolerability issues, supports further investigation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.


Jabes D.,NAICONS scrl | Brunati C.,NAICONS scrl | Candiani G.,Vicuron Pharmaceuticals | Riva S.,Vicuron Pharmaceuticals | And 2 more authors.
Antimicrobial Agents and Chemotherapy | Year: 2011

NAI-107 is a novel lantibiotic active against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), glycopeptide-intermediate S. aureus (GISA), and vancomycin-resistant enterococci (VRE). The aim of this study was to evaluate the in vivo efficacy of NAI-107 in animal models of severe infection. In acute lethal infections induced with a penicillin-intermediate Streptococcus pneumoniae strain in immunocompetent mice, or with MRSA, GISA, and VRE strains in neutropenic mice, the 50% effective dose (ED50) values of NAI-107 were comparable or lower than those of reference compounds, irrespective of the strain and immune status (0.51 to 14.2 mg/kg of body weight for intravenous [i.v.] NAI-107, 5.1 to 22.4 for oral linezolid, and 22.4 for subcutaneous [s.c.] vancomycin). In the granuloma pouch model induced in rats with a MRSA strain, intravenous NAI-107 showed a dose-proportional bactericidal activity that, at a single 40-mg/kg dose, compared with 2 20-mg/kg doses at a 12-h or 24-h interval, caused a 3-log 10-CFU/ml reduction of viable MRSA in exudates that persisted for more than 72 h. Rat endocarditis was induced with a MRSA strain and treated for five consecutive days. In a first experiment, using 5, 10, or 20 mg/kg/day, and in a second experiment, when 10 mg/kg at 12-h intervals was compared to 20 mg/kg/day, intravenous NAI-107 was effective in reducing the bacterial load in heart vegetations in a dose-proportional manner. Trough plasma levels, as determined on days 2 and 5, were several times higher than the NAI-107 minimal bactericidal concentration (MBC). NAI-107 binding to rat and human serum ranges between 93% and 98.6%. The rapid bactericidal activity of NAI-107 observed in vitro was thus confirmed by the efficacy in several models of experimental infection induced by Gram-positive pathogens, supporting further investigation of the compound. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

Loading Vicuron Pharmaceuticals collaborators
Loading Vicuron Pharmaceuticals collaborators