Entity

Time filter

Source Type

East Melbourne, Australia

Telford B.J.,University of Otago | Chen A.,University of Otago | Beetham H.,University of Otago | Frick J.,University of Otago | And 8 more authors.
Molecular Cancer Therapeutics | Year: 2015

The CDH1 gene, which encodes the cell-to-cell adhesion protein E-cadherin, is frequently mutated in lobular breast cancer (LBC) and diffuse gastric cancer (DGC). However, because E-cadherin is a tumor suppressor protein and lost from the cancer cell, it is not a conventional drug target. To overcome this, we have taken a synthetic lethal approach to determine whether the loss of E-cadherin creates druggable vulnerabilities. We first conducted a genome-wide siRNA screen of isogenic MCF10A cells with and without CDH1 expression. Gene ontology analysis demonstrated that G-protein-coupled receptor (GPCR) signaling proteins were highly enriched among the synthetic lethal candidates. Diverse families of cytoskeletal proteins were also frequently represented. These broad classes of E-cadherin synthetic lethal hits were validated using both lentiviral-mediated shRNA knockdown and specific antagonists, including the JAK inhibitor LY2784544, Pertussis toxin, and the aurora kinase inhibitors alisertib and danusertib. Next, we conducted a 4,057 known drug screen and time course studies on the CDH1 isogenic MCF10A cell lines and identified additional drug classes with linkages to GPCR signaling and cytoskeletal function that showed evidence of E-cadherin synthetic lethality. These included multiple histone deacetylase inhibitors, including vorinostat and entinostat, PI3K inhibitors, and the tyrosine kinase inhibitors crizotinib and saracatinib. Together, these results demonstrate that E-cadherin loss creates druggable vulnerabilities that have the potential to improve the management of both sporadic and familial LBC and DGC. © 2015 American Association for Cancer Research. Source


Mouneimne G.,Harvard University | Hansen S.D.,University of California at San Francisco | Selfors L.M.,Harvard University | Petrak L.,Harvard University | And 9 more authors.
Cancer Cell | Year: 2012

Dynamic actin cytoskeletal reorganization is integral to cell motility. Profilins are well-characterized regulators of actin polymerization; however, functional differences among coexpressed profilin isoforms are not well defined. Here, we demonstrate that profilin-1 and profilin-2 differentially regulate membrane protrusion, motility, and invasion; these processes are promoted by profilin-1 and suppressed by profilin-2. Compared to profilin-1, profilin-2 preferentially drives actin polymerization by the Ena/VASP protein, EVL. Profilin-2 and EVL suppress protrusive activity and cell motility by an actomyosin contractility-dependent mechanism. Importantly, EVL or profilin-2 downregulation enhances invasion in vitro and in vivo. In human breast cancer, lower EVL expression correlates with high invasiveness and poor patient outcome. We propose that profilin-2/EVL-mediated actin polymerization enhances actin bundling and suppresses breast cancer cell invasion. © 2012 Elsevier Inc. Source


Simpson K.J.,Victorian Center for Functional Genomics | Simpson K.J.,University of Melbourne | Davis G.M.,Monash University | Boag P.R.,Monash University
New Biotechnology | Year: 2012

The discovery of RNAi in Caenorhabditis elegans has generated a paradigm shift in how research is performed. Targeted gene knockdown using high throughput screening approaches is becoming a routine feature of the scientific landscape, and researchers can now evaluate the function of each gene in the genome in a relatively short period of time. This review compares and contrasts high throughput screening methodologies in C. elegans and mammalian cells and highlights the breadth of applications of this technology. © 2012 Elsevier B.V. Source


Strezoska Z.,Thermo Fisher Scientific | Licon A.,Thermo Fisher Scientific | Haimes J.,Thermo Fisher Scientific | Spayd K.J.,Thermo Fisher Scientific | And 8 more authors.
PLoS ONE | Year: 2012

RNAi screening using pooled shRNA libraries is a valuable tool for identifying genetic regulators of biological processes. However, for a successful pooled shRNA screen, it is imperative to thoroughly optimize experimental conditions to obtain reproducible data. Here we performed viability screens with a library of ~10 000 shRNAs at two different fold representations (100- and 500-fold at transduction) and report the reproducibility of shRNA abundance changes between screening replicates determined by microarray and next generation sequencing analyses. We show that the technical reproducibility between PCR replicates from a pooled screen can be drastically improved by ensuring that PCR amplification steps are kept within the exponential phase and by using an amount of genomic DNA input in the reaction that maintains the average template copies per shRNA used during library transduction. Using these optimized PCR conditions, we then show that higher reproducibility of biological replicates is obtained by both microarray and next generation sequencing when screening with higher average shRNA fold representation. shRNAs that change abundance reproducibly in biological replicates (primary hits) are identified from screens performed with both 100- and 500-fold shRNA representation, however a higher percentage of primary hit overlap between screening replicates is obtained from 500-fold shRNA representation screens. While strong hits with larger changes in relative abundance were generally identified in both screens, hits with smaller changes were identified only in the screens performed with the higher shRNA fold representation at transduction. © 2012 Strezoska et al. Source


Brasacchio D.,University of Melbourne | Brasacchio D.,Peter MacCallum Cancer Center | Noori T.,University of Melbourne | Noori T.,Peter MacCallum Cancer Center | And 14 more authors.
Cell Death and Differentiation | Year: 2014

The human lymphocyte toxins granzyme B (hGrzB) and perforin cooperatively induce apoptosis of virus-infected or transformed cells: perforin pores enable entry of the serine protease hGrzB into the cytosol, where it processes Bid to selectively activate the intrinsic apoptosis pathway. Truncated Bid (tBid) induces Bax/Bak-dependent mitochondrial outer membrane permeability and the release of cytochrome c and Smac/Diablo. To identify cellular proteins that regulate perforin/hGrzB-mediated Bid cleavage and subsequent apoptosis, we performed a gene-knockdown (KD) screen using a lentiviral pool of short hairpin RNAs embedded within a miR30 backbone (shRNAmiR). We transduced HeLa cells with a lentiviral pool expressing shRNAmiRs that target 1213 genes known to be involved in cell death signaling and selected cells with acquired resistance to perforin/hGrzB-mediated apoptosis. Twenty-two shRNAmiRs were identified in the positive-selection screen including two, PCAF and ADA3, whose gene products are known to reside in the same epigenetic regulatory complexes. Small interfering (si)RNA-mediated gene-KD of PCAF or ADA3 also conferred resistance to perforin/hGrzB-mediated apoptosis providing independent validation of the screen results. Mechanistically, PCAF and ADA3 exerted their pro-apoptotic effect upstream of mitochondrial membrane permeabilization, as indicated by reduced cytochrome c release in PCAF-KD cells exposed to perforin/hGrzB. While overall levels of Bid were unaltered, perforin/hGrzB-mediated cleavage of Bid was reduced in PCAF-KD or ADA3-KD cells. We discovered that PCAF-KD or ADA3-KD resulted in reduced expression of PACS2, a protein implicated in Bid trafficking to mitochondria and importantly, targeted PACS2-KD phenocopied the effect of PCAF-KD or ADA3-KD. We conclude that PCAF and ADA3 regulate Bid processing via PACS2, to modulate the mitochondrial cell death pathway in response to hGrzB. © 2014 Macmillan Publishers Limited All rights reserved. Source

Discover hidden collaborations