Time filter

Source Type

Tiel, Netherlands

vanSchrojensteinLantman E.M.,University Utrecht | dePeinder P.,VibSpec | Mank A.J.G.,HIGH-TECH | Weckhuysen B.M.,University Utrecht
ChemPhysChem | Year: 2015

Straightforward analysis of chemical processes on the nanoscale is difficult, as the measurement volume is linked to a discrete number of molecules, ruling out any ensemble averaging over rotation and diffusion processes. Raman spectroscopy is sufficiently selective for monitoring chemical changes, but is not sufficiently sensitive to be applied directly. Surface-enhanced Raman spectroscopy (SERS) can be applied for studying reaction kinetics, but adds additional variability in the signal as the enhancement factor is not the same for every location. A novel chemometric method described here separates reaction kinetics from short-term variability, based on the lack of fit in a principal-component analysis. We show that it is possible to study effects that occur on different time scales independently without data reduction using the photocatalytic reduction of p-nitrothiophenol as a showcase system. Using this approach a better description of the nanoscale reaction kinetics becomes available, while the short-term variations can be examined separately to examine reorientation and/or diffusion effects. It may even be possible to identify reaction intermediates through this approach. With only a limited number of reactive molecules in the studied volume, an intermediate on a SERS hot spot may temporarily dominate the spectrum. Now such events can be easily separated from the bulk conversion process by making use of this chemometric method. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Source

Wiedemann S.C.C.,University Utrecht | Wiedemann S.C.C.,Croda Nederland B.V. | Stewart J.A.,University Utrecht | Soulimani F.,University Utrecht | And 6 more authors.
Journal of Catalysis | Year: 2014

The formation and nature of coke (precursor) species has been studied during the skeletal isomerisation of oleic acid catalysed by protonated ferrierite, in the presence and absence of a triphenylphosphine promoter. UV-Vis and FT-IR spectroscopic analyses of the spent catalyst materials, complemented by NMR and mass spectrometry of the coke deposits extracted after HF dissolution, provide new insights into the deactivation mechanisms. Initial high catalyst activity and selectivity are quickly lost, despite conservation of the framework integrity, as a result of severe deactivation. Pore blockage is detected very early in the reaction, and only the pore mouth is actively employed. Additionally, polyenylic carbocations formed by hydrogen transfer reactions poison the active sites; they are considered to be the precursors to traces of condensed aromatics detected in the spent catalyst. Dodecyl benzene is the major "coke" constituent, and its precursor probably also competes for the active sites. © 2014 Elsevier Inc. All rights reserved. Source

Constant S.,University Utrecht | Wienk H.L.J.,University Utrecht | Frissen A.E.,Wageningen UR Food and Biobased Research Bornse | Peinder P.D.,VibSpec | And 7 more authors.
Green Chemistry | Year: 2016

Detailed insight into the structure and composition of industrial (technical) lignins is needed to devise efficient thermal, bio- or chemocatalytic valorisation strategies. Six such technical lignins covering three main industrial pulping methods (Indulin AT Kraft, Protobind 1000 soda lignin and Alcell, poplar, spruce and wheat straw organosolv lignins) were comprehensively characterised by lignin composition analysis, FT-IR, pyrolysis-GC-MS, quantitative 31P and 2D HSQC NMR analysis and molar mass distribution by Size Exclusion Chromatography (SEC). A comparison of nine SEC methods, including the first analysis of lignins with commercial alkaline SEC columns, showed molar masses to vary considerably, allowing some recommendations to be made. The lignin molar mass decreased in the order: Indulin Kraft > soda P1000 > Alcell > OS-W ∼ OS-P ∼ OS-S, regardless of the SEC method chosen. Structural identification and quantification of aromatic units and inter-unit linkages indicated that all technical lignins, including the organosolv ones, have considerably been degraded and condensed by the pulping process. Importantly, low amounts of β- ether linkages were found compared to literature values for protolignin and lignins obtained by other, milder isolation processes. Stilbenes and ether furfural units could also be identified in some of the lignins. Taken together, the insights gained in the structure of the technical lignins, in particular, the low β-O-4 contents, carry implications for the design of lignin valorisation strategies including (catalytic) depolymerisation and material applications. © 2016 The Royal Society of Chemistry. Source

Van Zandvoort I.,University Utrecht | Van Eck E.R.H.,Radboud University Nijmegen | De Peinder P.,VibSpec | Heeres H.J.,University of Groningen | And 2 more authors.
ACS Sustainable Chemistry and Engineering | Year: 2015

The valorization of the humin byproducts that are formed during hydrothermal, acid-catalyzed dehydration of carbohydrates is hampered by the insolubility of these byproducts. Here, we report on an alkaline pretreatment method that allows for the insolubility of this highly recalcitrant and structurally complex feed to be overcome. The reactive solubilization of glucose-derived humins was found to require a treatment at 200 °C in 0.5 M NaOH for 3.5 h. Fructose- and xylose-derived humins were found to be more recalcitrant, and complete dissolution required raising the temperature to 240 °C. Gel permeation chromatographic analyses show the relative average molecular weight of the now soluble humins to decrease with increasing temperature and reaction time. The alkali-treated humins are soluble in water of pH 7. Elemental analysis, IR, 2D PASS 13C solid-state NMR and pyrolysis-GC-MS (gas chromatography-mass spectrometry) data indicate that the alkaline pretreatment leads to considerable changes in the molecular structure of the humins. Cleavage of C-O-C bonds and further aromatization of the originally highly furanic humins result in the formation of (polycyclic) aromatic structures decorated with carboxylic acids. The combination of the reduction in Mw and the formation of polar functional groups are thought to be the reasons behind the improved solubility. © 2015 American Chemical Society. Source

Kerssens M.M.,University Utrecht | Wilbers A.,Royal DSM | Kramer J.,Royal DSM | De Peinder P.,VibSpec | And 5 more authors.
Faraday Discussions | Year: 2016

Within a fluid catalytic cracking (FCC) unit, a mixture of catalyst particles that consist of either zeolite Y (FCC-Y) or ZSM-5 (FCC-ZSM-5) is used in order to boost the propylene yield when processing crude oil fractions. Mixtures of differently aged FCC-Y and FCC-ZSM-5 particles circulating in the FCC unit, the so-called equilibrium catalyst (Ecat), are routinely studied to monitor the overall efficiency of the FCC process. In this study, the age of individual catalyst particles is evaluated based upon photographs after selective staining with substituted styrene molecules. The observed color changes are linked to physical properties, such as the micropore volume and catalytic cracking activity data. Furthermore, it has been possible to determine the relative amount of FCC-Y and FCC-ZSM-5 in an artificial series of physical mixtures as well as in an Ecat sample with unknown composition. As a result, a new practical tool is introduced in the field of zeolite catalysis to evaluate FCC catalyst performances on the basis of photo-spectroscopic measurements with an off-the-shelf digital single lens reflex (DSLR) photo-camera with a macro lens. The results also demonstrate that there is an interesting time and cost trade-off between single catalyst particle studies, as performed with e.g. UV-vis, synchrotron-based IR and fluorescence micro-spectroscopy, and many catalyst particle photo-spectroscopy studies, making use of a relatively simple DSLR photo-camera. The latter approach offers clear prospects for the quality control of e.g. FCC catalyst manufacturing plants. © 2016 The Royal Society of Chemistry. Source

Discover hidden collaborations