Entity

Time filter

Source Type

Gent, Belgium

Cerini F.,University of Geneva | Gaertner H.,University of Geneva | Madden K.,Biogrammatics, Inc. | Tolstorukov I.,Biogrammatics, Inc. | And 18 more authors.
Protein Expression and Purification | Year: 2016

In the continued absence of an effective anti-HIV vaccine, approximately 2 million new HIV infections occur every year, with over 95% of these in developing countries. Calls have been made for the development of anti-HIV drugs that can be formulated for topical use to prevent HIV transmission during sexual intercourse. Because these drugs are principally destined for use in low-resource regions, achieving production costs that are as low as possible is an absolute requirement. 5P12-RANTES, an analog of the human chemokine protein RANTES/CCL5, is a highly potent HIV entry inhibitor which acts by achieving potent blockade of the principal HIV coreceptor, CCR5. Here we describe the development and optimization of a scalable low-cost production process for 5P12-RANTES based on expression in Pichia pastoris. At pilot (150 L) scale, this cGMP compliant process yielded 30 g of clinical grade 5P12-RANTES. As well as providing sufficient material for the first stage of clinical development, this process represents an important step towards achieving production of 5P12-RANTES at a cost and scale appropriate to meet needs for topical HIV prevention worldwide. © 2015 The Authors. Published by Elsevier Inc. Source


De Clercq S.,Laboratory for Molecular Cancer Biology | Gembarska A.,Laboratory for Molecular Cancer Biology | Gembarska A.,Catholic University of Leuven | Denecker G.,Laboratory for Molecular Cancer Biology | And 6 more authors.
Molecular and Cellular Biology | Year: 2010

Mdm2 and Mdm4 are critical negative regulators of p53. A large body of evidence indicates that elevated expression of either Mdm2 or Mdm4 may favor tumor formation by inhibiting p53 tumor suppression function. To explore this possibility in vivo, we generated conditional Mdm2 and Mdm4 transgenic mice. We show that although both transgenes are designed to be expressed ubiquitously and at comparable levels, only the Mdm4 transgenic protein is produced at high levels in vivo. In contrast, exogenous Mdm2 is constitutively degraded in a proteasome-dependent manner, indicating that cells are equipped with efficient mechanisms that prevent Mdm2 accumulation in vivo. Mice that are homozygous for the Mdm4 transgene die during embryogenesis owing to severe vascular maturation defects. Importantly, this lethality is not rescued on a p53-null background, indicating that high levels of Mdm4 impact on a pathway(s) other than p53 that controls vascular and embryonic development. Mice expressing a single copy of the Mdm4 transgene are viable and, surprisingly, are not prone to spontaneous, radiation-induced or Eμ-myc-induced tumor formation. The findings have clear implications for cancer etiology as well as for cancer therapy. Copyright © 2010, American Society for Microbiology. All Rights Reserved. Source

Discover hidden collaborations