Duluth, GA, United States
Duluth, GA, United States

Time filter

Source Type

A waveguide architecture for a dual-polarized antenna including multiple antenna elements. Aspects are directed to dual-polarized antenna architectures where each antenna element includes a polarizer having an individual waveguide with dual-polarization signal propagation and divided waveguides associated with each basis polarization. The waveguide architecture may include unit cells having corporate waveguide networks associated with each basis polarization connecting each divided waveguide of the polarizers of each antenna element in the unit cell with a respective common waveguide. The waveguide networks may have waveguide elements located within the unit-cell boundary with a small or minimized inter-element distance. Thus, unit cells may be positioned adjacent to each other in a waveguide device assembly for a dual-polarized antenna array without increased inter-element distance between antenna elements of adjacent unit cells. Antenna waveguide ports may be connected to unit cell common waveguides using elevation and azimuth waveguide networks of the corporate type.


A partially dielectric loaded divided horn waveguide device for a dual-polarized antenna is described. The partially dielectric loaded divided horn waveguide device may include a polarizer, a waveguide horn, multiple individual waveguides dividing a horn port of the waveguide horn, and multiple dielectric elements partially filling the individual waveguides. The dielectric elements may include a dielectric member extending along a corresponding individual waveguide and one or more matching features for matching signal propagation between the partially dielectric loaded individual waveguides and free space. Various components of the partially dielectric loaded divided horn waveguide device may be tuned for enhanced signal propagation between the waveguide horn and the individual waveguides, and between the individual waveguides and free space.


Patent
ViaSat Inc. | Date: 2016-01-13

Systems and methods for providing mobility across satellite beams, are described. The system includes a first core node, a second core node in communication with the first core node at layer-2 of the OSI model (L2), and a first gateway in communication, at L2, with the first core, the first gateway configured to provide access to a first spot beam at a first location. The system further includes a second gateway in communication, at L2, with the second core node, the second gateway configure to provide access to a second spot beam at a second location, and a mobile device, at the first location, in communication with the first gateway via the first spot beam, wherein the mobile device is assigned an IP address by the first core node. The mobile device moves from the first location to the second location. Further, the first gateway, in response to the mobile device moving from the first location to the second location, notifies the second gateway, through the first core node and the second core node, that the mobile device is moving to the second location, and transmit the session information to the second gateway, and the second gateway, in response to the notification, maintains connectivity with the mobile device using the IP address.


Patent
ViaSat Inc. | Date: 2016-11-30

In an example embodiment, a waveguide device comprises: a first common waveguide; a polarizer section, the polarizer section including a conductive septum dividing the first common waveguide into a first divided waveguide portion and a second waveguide divided portion; a second waveguide coupled to the first divided waveguide portion of the polarizer section; a third waveguide coupled to the second divided waveguide portion of the polarizer section; and a dielectric insert. The dielectric insert includes a first dielectric portion partially filling the polarizer section. The conductive septum and the dielectric portion convert a signal between a polarized state in the first common waveguide and a first polarization component in the second waveguide and a second polarization component in the third waveguide.


Patent
ViaSat Inc. | Date: 2016-08-31

In an example embodiment, a waveguide combiner/divider comprises: a first waveguide including a first major ridge extending to a waveguide junction; a second waveguide including a second major ridge extending to the waveguide junction, the second major ridge connected to the first major ridge at a major ridge junction within the waveguide junction; and a third waveguide including a third major ridge extending to the waveguide junction, the third major ridge connected to the major ridge junction via a major ridge transition section, the major ridge transition section having a major ridge transition section height within the waveguide junction that is less than heights of the first major ridge and second major ridge.


Patent
ViaSat Inc. | Date: 2016-07-27

Methods, apparatuses, and systems are provided for improving utilization of a communications system through various atom-based techniques for enhancing the viewing experience for Internet protocol content. Some embodiments exploit atom-based processing to determine which content atoms to broadcast (e.g., multicast) over which channels to which subscribers. Other embodiments make atom-based filtering, caching, and/or other determinations at the user terminal. For example, low-level (e.g., physical layer) filtering may be used to limit the amount of user-layer processing needed, and to facilitate delivery of content to those users most likely to desire that content. Still other embodiments allow users to create customized channels of cached content for viewing as a shared channel. Embodiments include techniques for addressing synchronization of channel content and viewing, and social networking, for subscribers to the shared channel. The shared channels may be further used to facilitate social networking among subscribers.


Patent
ViaSat Inc. | Date: 2016-08-16

Methods, systems, and devices are described for providing network access services to mobile users via multi-user network access terminals over a multi-beam satellite system. Quality-of-service (QoS) is controlled for the mobile devices at a per-user level according to user-specific traffic policies Mobile users may be provisioned on the satellite system according to a set of traffic policies based on their service level agreement (SLA). System resources of the satellite may be allocated to mobile users based on the demand of each mobile user and the set of traffic polices associated with each mobile user, regardless of which multi-user network access terminal is used to access the system. Dynamic multiplexing of traffic from fixed terminals and mobile users on the same satellite beam can take advantage of statistical multiplexing of large numbers of users and on different usage patterns between fixed terminals and mobile users.


The present disclosure, for example, relates to one or more techniques for linearizing a signal in a communications system. An input signal may be obtained at a beginning of a signal path of a radio frequency (RF) communication device. The RF communication device may estimate subsequent distortion of the input signal due to the signal path. The estimated distortion may include estimated phase distortion and estimated amplitude distortion of the input signal. The RF communication device may adjust phase and amplitude within the signal path to compensate for the estimated phase distortion and the estimated amplitude distortion to produce an adjusted signal. The phase within the signal path of the input signal may be adjusted separately from the amplitude within the signal path of the input signal. The RF communication device may generate a linearized signal at an end of the signal path based at least in part on the adjusted signal.


Patent
Viasat Inc. | Date: 2016-05-24

A system, device, and method for a broad-band array antenna are presented. More particularly, the application relates to a broad-band fragmented aperture phased array antenna for the Ka, K, and/or Ku frequency bands. In various exemplary embodiments, the antenna system may support dynamic polarization degradation correction. In one exemplary embodiment a method and system for a broad-band fragmented aperture phased array antenna for the Ka, K, and/or Ku frequency band is presented. In one exemplary embodiment, the fragmented aperture design functions in one or more of the Ku-band, K-band, and/or Ka-band. In another exemplary embodiment, the antenna system may include full electronic polarization agility. In one exemplary embodiment, the antenna system may further comprise a printed circuit board radiating element. The printed circuit board radiating element may be configured to function as an antenna. In one exemplary embodiment, the antenna system may support operation over multiple frequency bands.


Patent
ViaSat Inc. | Date: 2016-01-07

Methods, systems, and apparatuses for providing layer-2 connectivity through a non-routed ground segment network, are described. A system includes a non-autonomous gateway in communication with a satellite configured to relay data packets. The non-autonomous gateway is configured to receive the data packets from the satellite at layer-1 (LI) of the OSI-model, generate a plurality of virtual tagging tuples within the layer-2 packet headers of the plurality of data packets. The non-autonomous gateway is further configured to transmit, at layer-2 (L2) of the OSI-model, the virtually tagged data packets. Each of the packets may include a virtual tagging tuple and an entity destination. The system further includes a L2 switch in communication with the non-autonomous gateway. The L2 switch may be configured to receive the data packets and transmit the data packets to the entity based on the virtual tuples associated with each of the data packets.

Loading ViaSat Inc collaborators
Loading ViaSat Inc collaborators