Viale Benedetto XV

Genova, Italy

Viale Benedetto XV

Genova, Italy

Time filter

Source Type

Monacelli F.,Viale Benedetto XV | Borghi R.,University of Genoa | Pacini D.,University of Genoa | Serrati C.,University of Genoa | And 2 more authors.
Clinical Chemistry and Laboratory Medicine | Year: 2014

Background: The histopathological hallmarks in Alzheimer's disease (AD) include neuronal cell death, formation of amyloid plaques and neurofibrillary tangles. Glycoxidation plays a crucial role in AD pathogenesis, as pentosidine and Nε-carboxymethyl-lysine (CML), were detected in AD hallmarks, and in vivo cerebrospinal fluid (CSF). However, the definitive role of AGEs in the neuropathology of AD is inconclusive. The aim of this preliminary study was to assess the level of pentosidine in CSF of patients affected by neurological disorders, including probable AD, in order to assess the feasibility of AGEs detection in CSF and to explore pentosidine as a potential biomarker in AD. Methods: Twenty-five patients diagnosed with AD (NINCDS ADRDA criteria) and different neurological disorders were enrolled. Diabetic patients were excluded. Pentosidine, CML, amyloid β1-42 were assessed by high vperformance liquid chromatography (HPLC) by Odetti modified method,and by sandwich ELISA respectively. Results: Our data showed the presence of pentosidine in all CSF samples, a significant increase in CSF pentosidine levels with age (p<0.05) and a significant decreased concentration of pentosidine in four AD subjects (p<0.01), after normalization to CSF protein concentration. Conclusions: The study showed that AGEs concentration in CSF might benefit from age correction, at least for pentosidine, originally addressing a potential systemic age-dependent AGEs accumulation. The significant decrease of CSF pentosidine in AD, even in 4 patients, might conceive that different AGEs inform specific types of neurodegeneration, depending on oxidative stress levels, blood-brain barrier permeability, brain localization and systemic risk factors. © 2014 by Walter de Gruyter Berlin Boston.


Puddu A.,Viale Benedetto XV | Sanguineti R.,Viale Benedetto XV | Traverso C.E.,Ophthalmology and Genetics | Viviani G.L.,Viale Benedetto XV | Nicolo M.,Ophthalmology and Genetics
Experimental Eye Research | Year: 2016

This study was conducted to compare the effects of two anti-VEGF-A drugs, Ranibizumab and Aflibercept, on the expression and secretion of VEGFs family members, and on their influence in proliferation and migration of endothelial cells (HECV) in vitro. HECV cells were exposed 24 h (T1), 4 days (T2) and 6 days (T3) to Ranibizumab or Aflibercept at pharmacodynamically relevant concentrations (Ranibizumab: 12.5 μg/ml and 125 μg/ml; Aflibercept: 50 μg/ml and 500 μg/ml). Cell viability and then expression and secretion of VEGF-A, VEGF-B, VEGF-C and PlGF were evaluated respectively by Real Time-PCR and ELISA. Intracellular signaling activated by VEGF-A and VEGF-C was investigated evaluating phosphorylation of VEGFR2. Influence in would healing was evaluated through scratch assay. In general no differences were observed among the tested concentrations of anti-vegf drugs. Ranibizumab and Aflibercept did not affect HECV cell viability in all experimental times. At T1, Ranibizumab decreased mRNA levels of VEGF-A, induced VEGF-C secretion, abrogated phosphorylation of VEGFR2 stimulated by VEGF-A, and impaired ability of HECV cells to repair wound healing. Aflibercept decreased mRNA levels of VEGF-A, -B and PlGF; slightly increased basal level of phVEGFR2, and completely abrogated phosphorylation stimulated by VEGF-A and VEGF-C. No effects on secretion of VEGF-B and on would healing were observed after exposure to Aflibercept. Prolonged exposure to anti-VEGFs decreased expression and secretion of VEGF-A and VEGF-B, up-regulated VEGF-C mRNA levels and its secretion, and increased basal phosphorylation of VEGFR2. Acute treatment with Ranibizumab or Aflibercept evoked different responses on endothelial cells, however these differences were lost after prolonged exposure. Scratch test results suggest that treatment with Ranibizumab may be more effective than Aflibercept in reducing angiogenic potential of endothelial cells in vitro. © 2016 Elsevier Ltd.


Puddu A.,Viale Benedetto XV | Storace D.,Viale Benedetto XV | Odetti P.,Viale Benedetto XV | Viviani G.L.,Viale Benedetto XV
Biochemical and Biophysical Research Communications | Year: 2010

Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic β-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation prevents FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HITT15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression. © 2010 Elsevier Inc.


Averna M.,Viale Benedetto XV | Bavestrello M.,Viale Benedetto XV | Cresta F.,University of Genoa | Pedrazzi M.,Viale Benedetto XV | And 10 more authors.
Archives of Biochemistry and Biophysics | Year: 2016

Matrix metalloproteinase 9 (MMP9) is physiologically involved in remodeling the extracellular matrix components but its abnormal release has been observed in several human pathologies. We here report that peripheral blood mononuclear cells (PBMCs), isolated from cystic fibrosis (CF) patients homozygous for F508del-cystic fibrosis transmembrane conductance regulator (CFTR), express constitutively and release at high rate MMP9 due to the alteration in their intracellular Ca2+ homeostasis. This spontaneous and sustained MMP9 secretion may contribute to the accumulation of this protease in fluids of CF patients. Conversely, in PBMCs isolated from healthy donors, expression and secretion of MMP9 are undetectable but can be evoked, after 12 h of culture, by paracrine stimulation which also promotes an increase in [Ca2+]i. We also demonstrate that in both CF and control PBMCs the Ca2+-dependent MMP9 secretion is mediated by the concomitant activation of calpain and protein kinase Cα (PKCα), and that MMP9 expression involves extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) phosphorylation. Our results are supported by the fact that either the inhibition of Ca2+ entry or chelation of [Ca2+]i as well as the inhibition of single components of the signaling pathway or the restoration of CFTR activity all promote the reduction of MMP9 secretion. © 2016 Elsevier Inc.


PubMed | Viale Benedetto XV
Type: Journal Article | Journal: Biochemical and biophysical research communications | Year: 2010

Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic beta-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation prevents FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.

Loading Viale Benedetto XV collaborators
Loading Viale Benedetto XV collaborators