Entity

Time filter

Source Type

Randers, Denmark

Vestas Wind Systems A/S is a Danish manufacturer, seller, installer, and servicer of wind turbines. It is the largest in the world, but due to very rapid growth of its competitors its market share decreased significantly from 28% in 2007. In 2012 it even lost its top position, but regained it in 2013 with 13.1% market share. The company operates manufacturing plants in Denmark, Germany, India, Italy, Romania, the United Kingdom, Spain, Sweden, Norway, Australia, China, and the United States, and employs more than 17,000 people globally. Wikipedia.


A method of transporting a wind turbine blade with a curved central longitudinal axis includes loading the wind turbine blade onto a transportation device including first and second support bearings. The wind turbine blade is loaded in a first orientation in which the curved central longitudinal axis is located in a generally vertical plane. When the transportation device is preparing to turn, the wind turbine blade is rotated to a second orientation before or during turning such that the curved central longitudinal axis is located in a generally horizontal plane and bends around the turn. As a result, the curved wind turbine blade and transportation device can traverse tighter curves and turns during travel to an assembly site or quayside.


Patent
Vestas Inc. | Date: 2015-11-06

A power dissipating arrangement for dissipating power from a generator in a wind turbine is provided. The generator comprises a plurality of output terminals corresponding to a multi-phase output. The power dissipating arrangement comprises a plurality of dissipating units, a plurality of semiconductor switches, a trigger circuit for switching the semiconductor switches and a control unit for controlling the operation of the trigger circuit, thereby controlling the switching of the semiconductor switches.


Patent
Vestas Inc. | Date: 2015-01-09

A wind turbine is arranged to operate in a fully-functional converter mode and a faulty-converter mode. A plurality of converters are arranged to share electric current in the fully-functional converter mode. The converters are dimensioned not only to operate at nominal active current but to provide an over-current margin to enable reactive current to be produced on top of the nominal active current in the fully-functional converter mode. In the fully-functional converter mode the converters are caused to produce reactive current on top of the nominal active current. In response to a fault of one or more of the converters, operation is changed from the fully-functional converter mode to the faulty-converter mode. In the faulty-converter mode, one or more other converters of the converter system are caused to produce additional active current by using their over-current margin to compensate at least partly for a reduction of active-current production due to the fault of one of the converters, and to reduce the reactive-current production by the other converter correspondingly.


Wind turbine systems and methods are disclosed herein. A representative system includes a wind turbine blade having an inner region that has an internal load-bearing truss structure, and an outer region that has an internal, non-truss, load-bearing structure. In particular embodiments, the truss structure can include a triangular arrangement of spars, and/or can include truss attachment members that connect components of the truss without the use of holes in the spars. Spars can be produced from a plurality of pultruded composite members laminated together in longitudinally extending portions. The longitudinally extending portions can be connected at joints that interleave projections and recesses of each of the spar portions. The blades can include fan-shaped transitions at a hub attachment portion, formed by laminated layers and/or a combination of laminated layers and transition plates.


The present invention relates to a method for controlling a reactive power source in a wind power plant, the method comprising the steps of providing a wind turbine reactive power control signal and providing an active power reference signal, said active power reference signal being a measure of an active power production of the wind power plant. A control signal for the reactive power source is generated by combining the wind turbine reactive power control signal and the active power reference signal in such a way that the control signal for the reactive power source becomes a weighted signal of the wind turbine reactive power control signal. Moreover, the present invention relates to control units and wind power plants suitable for carrying out the present invention.

Discover hidden collaborations