Redwood City, CA, United States
Redwood City, CA, United States

Time filter

Source Type

Patent
Verinata Health | Date: 2016-09-28

Methods and kits for selectively enriching non-random polynucleotide sequences are provided. Methods and kits for generating libraries of sequences are provided. Methods of using selectively enriched non-random polynucleotide sequences for detection of fetal aneuploidy are provided.


The invention provides compositions and methods for determining the fraction of fetal nucleic acids in a maternal sample comprising a mixture of fetal and maternal nucleic acids. The fraction of fetal nucleic acids can be used in determining the presence or absence of fetal aneuploidy.


Patent
Verinata Health | Date: 2016-08-11

Methods of reliably estimating genomic fraction (e.g., fetal fraction) from polymorphisms such as small base variations or insertions-deletions are disclosed. Sequenced data from a multigenomic source is used to determine allele counts for one or more of the polymorphisms. For one or more of the polymorphisms, zygosity is assigned, and genomic fraction is determined from the zygosity and allele counts. Certain embodiments employ SNPs as the relevant polymorphism. The disclosed methods can be applied as part of an intentional, pre-designed re-sequencing study targeted against known polymorphisms or can be used in a retrospective analysis of variations found by coincidence in overlapping sequences generated from maternal plasma (or any other setting where a mixture of DNA from several people are present).


Patent
Verinata Health | Date: 2015-03-18

The invention provides methods for determining aneuploidy and/or fetal fraction in maternal samples comprising fetal and maternal cfDNA by massively parallel sequencing. The method comprises a novel protocol for preparing sequencing libraries that unexpectedly improves the quality of library DNA while expediting the process of analysis of samples for prenatal diagnoses.


Patent
Verinata Health | Date: 2016-02-05

The invention provides a method for determining copy number variations (CNV) of a sequence of interest in a test sample that comprises a mixture of nucleic acids that are known or are suspected to differ in the amount of one or more sequence of interest. The method comprises a statistical approach that accounts for accrued variability stemming from process-related, interchromosomal and inter-sequencing variability. The method is applicable to determining CNV of any fetal aneuploidy, and CNVs known or suspected to be associated with a variety of medical conditions. CNV that can be determined according to the method include trisomies and monosomies of any one or more of chromosomes 1-22, X and Y, other chromosomal polysomies, and deletions and/or duplications of segments of any one or more of the chromosomes, which can be detected by sequencing only once the nucleic acids of a test sample.


The invention provides compositions and methods for determining the fraction of fetal nucleic acids in a maternal sample comprising a mixture of fetal and maternal nucleic acids. The fraction of fetal nucleic acids can be used in determining the presence or absence of fetal aneuploidy.


Patent
Verinata Health | Date: 2015-06-17

The invention provides a method for determining copy number variations (CNV) of a sequence of interest in a test sample that comprises a mixture of nucleic acids that are known or are suspected to differ in the amount of one or more sequence of interest. The method comprises a statistical approach that accounts for accrued variability stemming from process-related, interchromosomal and inter-sequencing variability. The method is applicable to determining CNV of any fetal aneuploidy, and CNVs known or suspected to be associated with a variety of medical conditions.


Patent
Verinata Health | Date: 2016-03-16

The invention provides a method for determining copy number variations (CNV) of a sequence of interest in a test sample that comprises a mixture of nucleic acids that are known or are suspected to differ in the amount of one or more sequence of interest. The method comprises a statistical approach that accounts for accrued variability stemming from process-related, interchromosomal and inter-sequencing variability. The method is applicable to determining CNV of any fetal aneuploidy, and CNVs known or suspected to be associated with a variety of medical conditions. CNV that can be determined according to the method include trisomies and monosomies of any one or more of chromosomes 1-22, X and Y, other chromosomal polysomies, and deletions and/or duplications of segments of any one or more of the chromosomes, which can be detected by sequencing only once the nucleic acids of a test sample.


Patent
Verinata Health | Date: 2016-10-12

Methods of reliably estimating genomic fraction (e.g., fetal fraction) from polymorphisms such as small base variations or insertions-deletions are disclosed. Sequenced data from a multigenomic source is used to determine allele counts for one or more of the polymorphisms. For one or more of the polymorphisms, zygosity is assigned, and genomic fraction is determined from the zygosity and allele counts. Certain embodiments employ SNPs as the relevant polymorphism. The disclosed methods can be applied as part of an intentional, pre-designed re-sequencing study targeted against known polymorphisms or can be used in a retrospective analysis of variations found by coincidence in overlapping sequences generated from maternal plasma (or any other setting where a mixture of DNA from several people are present).


Patent
Verinata Health | Date: 2015-05-29

Disclosed are methods for determining copy number variation (CNV) known or suspected to be associated with a variety of medical conditions, including syndromes related to CNV of subchromosomal regions. In some embodiments, methods are provided for determining CNV of fetuses using maternal samples comprising maternal and fetal cell free DNA. Some embodiments disclosed herein provide methods to improve the sensitivity and/or specificity of sequence data analysis by removing within-sample GC-content bias. In some embodiments, removal of within-sample GC-content bias is based on sequence data corrected for systematic variation common across unaffected training samples. In some embodiments, syndrome related biases in sample data are also removed to increase signal to noise ratio. Also disclosed are systems for evaluation of CNV of sequences of interest.

Loading Verinata Health collaborators
Loading Verinata Health collaborators