Veolia Water Australia

Brisbane, Australia

Veolia Water Australia

Brisbane, Australia
SEARCH FILTERS
Time filter
Source Type

Farre M.J.,University of Queensland | Doderer K.,University of Queensland | Hearn L.,University of Queensland | Poussade Y.,Veolia Water Australia | And 3 more authors.
Journal of Hazardous Materials | Year: 2011

N-nitrosodimethylamine (NDMA) can be formed when secondary effluents are disinfected by chloramines. By means of bench scale experiments this paper investigates operational parameters than can help Advanced Water Treatment Plants (AWTPs) to reduce the formation of NDMA during the production of high quality recycled water. The formation of NDMA was monitored during a contact time of 24. h using dimethylamine as NDMA model precursor and secondary effluent from wastewater treatment plants. The three chloramine disinfection strategies tested were pre-formed and in-line formed monochloramine, and pre-formed dichloramine. Although the latter is not employed on purpose in full-scale applications, it has been suggested as the main contributing chemical generating NDMA during chloramination. After 24. h, the NDMA formation decreased in both matrices tested in the order: pre-formed dichloramine. >. in-line formed monochloramine. » pre-formed monochloramine. The most important parameter to consider for the inhibition of NDMA formation was the length of contact time between disinfectant and wastewater. Formation of NDMA was initially inhibited for up to 6. h with concentrations consistently <10. ng/L during these early stages of disinfection, regardless of the disinfection strategy. The reduction of the contact time was implemented in Bundamba AWTP (Queensland, Australia), where NDMA concentrations were reduced by a factor of 20 by optimizing the disinfection strategy. © 2010 Elsevier B.V.


Fujioka T.,University of Wollongong | Khan S.J.,University of New South Wales | McDonald J.A.,University of New South Wales | Roux A.,Level 2 Industries | And 4 more authors.
Desalination | Year: 2013

The influence of membrane characteristics on the rejection of eight N-nitrosamines was investigated using one nanofiltration (NF), one seawater reverse osmosis (SWRO) and six low pressure reverse osmosis (LPRO) membranes. The rejection of the two lowest molecular weight N-nitrosamines, namely N-nitrosodimethylamine (NDMA) and N-nitrosomethylethylamine (NMEA), varied in the range from 8-82% to 23-94%, respectively. In general, the rejection of NDMA and NMEA increased with decreasing membrane permeability. The impact of membrane characteristics became less important for higher molecular weight N-nitrosamines. Among the four LPRO membranes (i.e. ESPA2, LFC3, TFC-HR and 70LW) that are commonly used for water reclamation applications, similar rejections were obtained for NDMA (37-52%) and NMEA (69-82%). In addition, rejection values of NDMA and NMEA among two LPRO membranes (i.e. ESPA2 and 70LW) were almost identical when compared under variable permeate flux and feed temperature conditions. However, it is noteworthy that the ESPAB membrane could achieve very high rejection of NDMA (as high as 71%) despite having a similar permeability to the LPRO membranes. Results reported here suggest that membrane characteristics associated with permeability such as the pore size and thickness of the active skin layer can be a key factor determining N-nitrosamine rejection. © 2013.


Fujioka T.,University of Wollongong | Khan S.J.,University of New South Wales | Poussade Y.,Veolia Water Australia | Poussade Y.,Level 2 Industries | And 3 more authors.
Separation and Purification Technology | Year: 2012

N-nitrosodimethylamine (NDMA) and several other N-nitrosamines have been identified as probable human carcinogens. Here, we review key aspects related to the occurrence and removal of N-nitrosamines by reverse osmosis (RO) membranes in the context of indirect potable water reuse. A comprehensive analysis of the existing data reveals significant variations in the rejection of NDMA by RO membranes reported in the literature, ranging from negligible up to 86%. This review article provides some insight into the reasons for such variations by examining the available data on the effects of operating conditions on NDMA rejection. Amongst several operating parameters investigated so far in the literature, feed temperature, membrane permeate flux, feed solution pH and ionic strength were found to have considerable impact on NDMA rejection by RO membranes. In particular, it has been recently shown that seasonal changes in feed temperature (e.g. from 20 to 30 °C) can result in a significant decrease in NDMA rejection (from 49% to 25%). However, the combined effects of all operating parameters identified in the literature to date can only account for some of the variations in NDMA rejection that have been observed in full-scale RO plants. The impacts of membrane fouling and particularly chemical cleaning on the rejection of N-nitrosamines have not been fully investigated. Finally, this review article presents a roadmap for further research required to optimise the rejection of NDMA and other N-nitrosamines by RO membranes. © 2012 Elsevier B.V. All rights reserved.


Fujioka T.,University of Wollongong | Khan S.J.,University of New South Wales | McDonald J.A.,University of New South Wales | Roux A.,Level 2 Industries | And 4 more authors.
Water Research | Year: 2013

This study aims to provide longitudinal and spatial insights to the rejection of N-nitrosamines by reverse osmosis (RO) membranes during sampling campaigns at three full-scale water recycling plants. Samples were collected at all individual filtration stages as well as at a cool and a warm weather period to elucidate the impact of recovery and feed temperature on the rejection of N-nitrosamines. N-nitrosodimethylamine (NDMA) was detected in all RO feed samples varying between 7 and 32ng/L. Concentrations of most other N-nitrosamines in the feed solutions were determined to be lower than their detection limits (3-5ng/L) but higher concentrations were detected in the feed after each filtration stage. As a notable exception, in one plant, N-nitrosomorpholine (NMOR) was observed at high concentrations in RO feed (177-475ng/L) and permeate (34-76ng/L). Overall rejection of NDMA among the three RO systems varied widely from 4 to 47%. Data presented here suggest that the feed temperature can influence rejection of NDMA. A considerable variation in NDMA rejection across the three RO stages (14-78%) was also observed. Overall NMOR rejections were consistently high ranging from 81 to 84%. On the other hand, overall rejection of N-nitrosodiethylamine (NDEA) varied from negligible to 53%, which was considerably lower than values reported in previous laboratory-scale studies. A comparison between results reported here and the literature indicates that there can be some discrepancy in N-nitrosamine rejection data between laboratory- and full-scale studies probably due to differences in water recoveries and operating conditions (e.g. temperature, membrane fouling, and hydraulic conditions). © 2013.


Fujioka T.,University of Wollongong | Khan S.J.,University of New South Wales | McDonald J.A.,University of New South Wales | Henderson R.K.,University of New South Wales | And 5 more authors.
Journal of Membrane Science | Year: 2013

The impact of fouling on N-nitrosamine rejection by nanofiltration (NF) and reverse osmosis (RO) membranes was investigated in this study. Membrane fouling was simulated using tertiary treated effluent and several model fouling solutions (that contained sodium alginate, bovine serum albumin, humic acid or colloidal silica) to elucidate the changes in rejection behaviour of N-nitrosamines. In general, the rejection of N-nitrosamines increased when the membranes were fouled by tertiary effluent. The rejection of small molecular weight N-nitrosamines was most affected by membrane fouling. In particular, the rejection of N-nitrosodimethylamine (NDMA) by the ESPA2 membrane increased from 34% to 73% after membrane fouling caused by tertiary effluent. The results also indicate that the impact was less apparent for the lowest permeability membrane (i.e., ESPAB), and the rejection of N-nitrosamines by the ESPAB membrane was over 82% regardless of membrane fouling. The effect of membrane fouling caused by model foulants on N-nitrosamine rejection was considerably less than that caused by tertiary effluent. Size exclusion chromatography analyses revealed that the tertiary effluent contains a high fraction of low molecular weight (<500. g/mol) organic substances. It appears that these low molecular weight foulants present in the tertiary effluent can restrict the solute pathway within the active skin layer of membranes, resulting in the observed increase of solute rejection. © 2012.


Fujioka T.,University of Wollongong | Nghiem L.D.,University of Wollongong | Khan S.J.,University of New South Wales | McDonald J.A.,University of New South Wales | And 3 more authors.
Journal of Membrane Science | Year: 2012

The rejection of eight N-nitrosamines was investigated in this laboratory-scale study, focusing on the influence of feed solution characteristics on their separation by low pressure reverse osmosis membranes. The rejection mechanisms of N-nitrosamines were first examined using one nanofiltration (NF90) and two reverse osmosis (TFC-HR and SWC5) membranes. The TFC-HR membrane was used to investigate the effects of feed solution characteristics. The rejection of a particular N-nitrosamine was generally membrane dependent and increased in the order of NF (NF90), low pressure RO (TFC-HR) and seawater RO (SWC5) membranes. In general, the rejection of N-nitrosamines by a given membrane also increased in the order of increasing molecular weight. These results suggested that steric hindrance was a dominating rejection mechanism of N-nitrosamines. Nevertheless, it was also observed from the result of N-nitrosomorpholine (NMOR) that the rejection of N-nitrosamines may also depend on other physicochemical properties such as hydrophobicity. A decrease in the feed solution pH (from 9 to 3) resulted in a decrease in the rejection of the two smallest molecular weight N-nitrosamines, namely N-nitrosodimethylamine (NDMA) and N-nitrosomethylethylamine (NMEA). Changes in the feed solution ionic strength (from 26 to 260. mM) caused a discernible decrease only in NDMA rejection, while no apparent impact on rejection was observed for an increase in the feed concentration. On the other hand, it is striking that an increase in the feed temperature led to a significant decrease in the rejection of all N-nitrosamines and the impact was more pronounced for the small molecular weight N-nitrosamines. For example, a significant drop in NDMA rejection (from 49 to 25%) was observed as the feed temperature increased from 20 to 30 °C. The results also indicate that pH, ionic strength, and temperature of the feed solution can exert some influence on the rejection of NDMA and in some cases other N-nitrosamines. The combined effects of these feed solution characteristics, particularly feed temperature, may account for some of the variation of NDMA rejection by RO membranes previously reported in the literature. © 2012.


Lawrence M.G.,University of Queensland | Keller J.,University of Queensland | Poussade Y.,Veolia Water Australia
Water Science and Technology | Year: 2010

Stable gadolinium (Gd) complexes have been used as paramagnetic contrast agents for magnetic resonance imaging (MRI) for over 20 years, and have recently been identified as environmental contaminants. As the rare earth elements (REE), which include Gd, are able to be measured accurately at very low concentrations (e.g. Tb is measured at 7 fmol/kg in this study) using inductively coupled plasma mass spectrometry (ICP-MS), it is possible to determine the fate of this class of compounds during the production of purified recycled water from effluent. Coagulation and microfiltration have negligible removal, with the major removal step occurring across the reverse osmosis membrane where anthropogenic Gd (the amount of Gd attributable to MRI contrast agents) is reduced from 0.39 nmol/kg to 0.59 pmol/kg, a reduction of 99.85%. The RO concentrate has anthropogenic Gd concentrations of 2.6 nmol/kg, an increase in concentration in line with the design characteristics of the plant. The increased concentration in the RO concentrate may allow further development of anthropogenic Gd as a tracer of the fate of the RO concentrate in the environment. © IWA Publishing 2010.


Ayache C.,University of Queensland | Ayache C.,Veolia | Ayache C.,CNRS Poitiers Institute of Chemistry: Materials and Natural Resources | Pidou M.,University of Queensland | And 7 more authors.
Water Research | Year: 2013

This study aims at comparing low-pressure membrane fouling obtained with two different secondary effluents at bench and pilot-scale based on the determination of two fouling indices: the total fouling index (TFI) and the hydraulically irreversible fouling index (HIFI). The main objective was to investigate if simpler and less costly bench-scale experimentation can substitute for pilot-scale trials when assessing the fouling potential of secondary effluent in large scale membrane filtration plants producing recycled water. Absolute values for specific flux and total fouling index for the bench-scale system were higher than those determined from pilot-scale, nevertheless a statistically significant correlation (r2 = 0.63, α = 0.1) was obtained for the total fouling index at both scales. On the contrary no such correlation was found for the hydraulically irreversible fouling index. Advanced water characterization tools such as excitation-emission matrix fluorescence spectroscopy (EEM) and liquid chromatography with organic carbon detection (LC-OCD) were used for the characterization of foulants. On the basis of statistical analysis, biopolymers and humic substances were found to be the major contribution to total fouling (r2 = 0.95 and r2 = 0.88, respectively). Adsorption of the low molecular weight neutral compounds to the membrane was attributed to hydraulically irreversible fouling (r2 = 0.67). © 2013 Elsevier Ltd.


Donose B.C.,University of Queensland | Sukumar S.,University of Queensland | Pidou M.,University of Queensland | Poussade Y.,Veolia Water Australia | And 2 more authors.
Desalination | Year: 2013

The declining functionality associated with membranes ageing includes changes in physical parameters, such as, thickness, roughness and density of defects, but also in chemical structure. All these factors impact synergistically on the major performance indicators: permeability and salt rejection. In this study, three types of commercially available RO membranes were statically exposed to hypochlorite solutions and analysed by Fourier transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) in conjunction with performance tests. IR data support the chemical structure alteration for samples aged at pHs 7 and 4, where hypochlorous acid (HOCl) is the main oxidant. For two of the membranes, AFM results indicate increasing roughness at pH 4. Performance tests show a reduction of de-ionised (DI) water and brackish water permeability at pH 7 and pH 4, while at pH 10, where hypochlorite ion (ClO-) is abundant, permeability increases. Salt rejection results vary in a narrow interval of 5% and depend on the type of membrane. Based on these results the ppm·h concept appears to fail to express a simple ageing kinetic over the entire range of pH, owing to the competing mechanisms of ring chlorination and surface hydrolysis of amide groups. © 2012 Elsevier B.V.


Mejia Likosova E.,University of Queensland | Keller J.,University of Queensland | Poussade Y.,Veolia Water Australia | Freguia S.,University of Queensland
Water Research | Year: 2014

During wastewater treatment and drinking water production, significant amounts of ferric sludge (comprising ferric oxy-hydroxides and FePO4) are generated that require disposal. This practice has a major impact on the overall treatment cost as a result of both chemical addition and the disposal of the generated chemical sludge. Iron sulfide (FeS) precipitation via sulfide addition to ferric phosphate (FePO4) sludge has been proven as an effective process for phosphate recovery. In turn, iron and sulfide could potentially be recovered from the FeS sludge, and recycled back to the process. In this work, a novel process was investigated at lab scale for the recovery of soluble iron and sulfide from FeS sludge. Soluble iron is regenerated electrochemically at a graphite anode, while sulfide is recovered at the cathode of the same electrochemical cell. Up to 60±18% soluble Fe and 46±11% sulfide were recovered on graphite granules for up-stream reuse. Peak current densities of 9.5±4.2Am-2 and minimum power requirements of 2.4±0.5kWhkgFe-1 were reached with real full strength FeS suspensions. Multiple consecutive runs of the electrochemical process were performed, leading to the successful demonstration of an integrated process, comprising FeS formation/separation and ferric/sulfide electrochemical regeneration. © 2013 Elsevier Ltd.

Loading Veolia Water Australia collaborators
Loading Veolia Water Australia collaborators