Rueil - Malmaison, France
Rueil - Malmaison, France

Veolia Environnement S.A. is a French transnational company with activities in four main service and utility areas traditionally managed by public authorities – water supply and management, waste management, energy and transport services. In 2012, Veolia employed 318,376 employees in 48 countries. Its revenue in that year was recorded at €29.4 billion. It is quoted on Euronext Paris and the New York Stock Exchange. It is headquartered in the 16th arrondissement of Paris.Between 2000 and 2003 the company was known as Vivendi Environnement, having been spun off from the Vivendi conglomerate, most of the rest of which became Vivendi. Prior to 1998 Vivendi was known as Compagnie Générale des Eaux. Wikipedia.


Time filter

Source Type

Grant
Agency: European Commission | Branch: FP7 | Program: CP | Phase: ENV.2013.WATER INNO&DEMO-1 | Award Amount: 10.50M | Year: 2014

The ability of Europes communities to respond to increasing water stress by taking advantage of water reuse opportunities is restricted by low public confidence in solutions, inconsistent approaches to evaluating costs and benefits of reuse schemes, and poor coordination of the professionals and organisations who design, implement and manage them. The DEMOWARE initiative will rectify these shortcomings by executing a highly collaborative programme of demonstration and exploitation, using nine existing and one greenfield site to stimulate innovation and improve cohesion within the evolving European water reuse sector. The project is guided by SME & industry priorities and has two central ambitions; to enhance the availability and reliability of innovative water reuse solutions, and to create a unified professional identity for the European Water Reuse sector. By deepening the evidence base around treatment processes and reuse scheme operation (WP1), process monitoring and performance control (WP2), and risk management and environmental benefit analysis (WP3) DEMOWARE will improve both operator and public confidence in reuse schemes. It will also advance the quality and usefulness of business models and pricing strategies (WP4) and generate culturally and regulatory regime specific guidance on appropriate governance and stakeholder collaboration processes (WP5). Project outcomes will guide the development of a live in-development water reuse scheme in the Vende (WP6). Dissemination (WP7) and exploitation (WP8) activities, including the establishment of a European Water Reuse Association, ensure that DEMOWARE will shape market opportunities for European solution providers and provide an environment for the validation and benchmarking of technologies and tools. Ultimately the DEMOWARE outcomes will increase Europes ability to profit from the resource security and economic benefits of water reuse schemes without compromising human health and environmental integrity.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SPIRE-06-2015 | Award Amount: 5.19M | Year: 2015

Out of the community created by SPIRE covering industrial and research actors throughout Europe, the EPOS project brings together 6 global process industries from 6 key relevant sectors: steel, cement, minerals, chemicals, bio-based/life science products and engineering. Together they represent 166 bn in sales with 75% of their production located in Europe. The 6 industries joined forces with 2 excellent science institutes and 4 highly R&I minded SMEs, building the EPOS consortium with Ghent University as coordinator. With the aim of reinforcing competitiveness of the EU industry, it is the ambition of the EPOS partners to gain cross-sectorial knowledge and investigate cluster opportunities using an innovative Industrial Symbiosis (IS) platform to be developed and validated during the project. The main objective is to enable cross-sectorial IS and provide a wide range of technological and organisational options for making business and operations more efficient, more cost-effective, more competitive and more sustainable across process sectors. The expected impact is clearly in line with the SPIRE roadmap - and sector associations, city councils (in the districts where EPOS is deployed), the SPIRE PPP as well as standardisation bodies are committed to participate in the EPOS transdisciplinary advisory board. The EPOS project spans 48 months and its structure builds on activities that ensure the project challenge is addressed in an optimal way, including cross-sectorial key performance indicators, sector profiles and cross-sector markets, IS toolbox development, training and validation of the (simple and single) IS management tool in 5 clusters strategically located throughout EU (i.e. France, Poland, Switzerland and UK). Entire work packages are dedicated to dissemination and to define realistic business scenarios for the exploitation of the EPOS tool and the proven, overall cost-reducing IS cluster activities, in view of a wide uptake and a broad EPOS outreach.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: EE-13-2015 | Award Amount: 2.00M | Year: 2016

Intelligent Energy Europe expects district heating to double its share of the European heat market by 2020 while district cooling will grow to 25%. While this expansion will translate into 2.6% reduction in the European primary energy need and 9.3% of all carbon emissions, it will not be achieved through modernization and expansion alone but requires fundamental technological innovation to make the next generation of district heating and cooling (DHC) systems highly efficient and cost effective to design, operate and maintain. E2District aims to develop, deploy, and demonstrate a novel cloud enabled management framework for DHC systems, which will deliver compound energy cost savings of 30% through development of a District Simulation Platform to optimise DHC asset configuration targeting >5% energy reduction, development of intelligent adaptive DHC control and optimisation methods targeting an energy cost reduction between 10 and 20%, including flexible production, storage and demand assets, and system-level fault detection and diagnostics, development of behaviour analytics and prosumer engagement tools to keep the end user in the loop, targeting overall energy savings of 5%. Development of a flexible District Operation System for the efficient, replicable and scalable deployment of DHC monitoring, intelligent control, FDD and prosumer engagement, development of novel business models for DHC Operators, Integrators and Designers, validation, evaluation, and demonstration of the E2District platform, and development of strong and rigorous dissemination, exploitation and path-to-market strategies to ensure project outcomes are communicated to all DHC stakeholders. E2District addresses specifically the calls objective related to the development of optimisation, control, metering, planning and modelling tools including consumer engagement and behaviour analytics and supports the integration of multiple generation sources, including renewable energy and storage.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: SPIRE-04-2014 | Award Amount: 497.52K | Year: 2015

The SPIRE Roadmap calls for an industry-focused study of current sustainability assessment approaches across the process industries, with the aim of identifying and promoting a suitable toolkit. Project STYLE is an industry-led consortium representing a broad spread of process industry sectors with numerous products that cross sector boundaries through their value chains. Partner organisations (Britest, ArcelorMittal, Carmeuse, Holcim, RDC Environment, IVL, Solvay, Tata Steel, Utrecht University and Veolia) bring together a wealth of knowledge and experience in the use of tools for sustainability assessment. Active stakeholder engagement/support from public and private sector organisations, national standardisation bodies and industry associations from project inception, will ensure focus and clarity in addressing the challenges identified in the call. Project STYLE has three key objectives, to: 1. Identify best practice in sustainability evaluation, across sectors and through value chains via inventory and classification of established approaches. 2. Test and deliver a practical toolkit for sustainability evaluation of processes and products, spanning multiple sectors and easily usable by non-practitioners of LCA. 3. Determine gaps, through critical assessment and validation, and identify future research needs to improve the toolkit and ensure broad applicability across sectors. Industrial partners in the project will provide the cross-sectoral case study opportunities for testing existing partner tools and selected tools identified through the inventory and classification stages. The research and consultancy partners will ensure that the project methodology is rigorous, sufficiently wide-ranging and that recommendations are validated and consistent with the best world-wide standards. Dissemination of project outputs via and in collaboration with the stakeholder groups will promote uptake and increase the EU knowledge base for sustainability evaluation.


Grant
Agency: European Commission | Branch: FP7 | Program: CP | Phase: ENV.2012.6.1-3 | Award Amount: 6.53M | Year: 2012

The RAMSES project will develop a rigorous, analytical framework for the implementation of adaptation strategies and measures in EU and international cities. It will develop a set of innovative methods and tools that will quantify the impacts of climate change and the costs and benefits of adaptation to climate change and thus provide the evidence to enable policy makers to design adaptation strategies. It integrates the assessment of impacts and costs to provide a much more coherent approach than currently exists. As major centres of population, economic importance, greenhouse gas emissions and infrastructure, RAMSES focuses on adaptation issues in cities. RAMSES will deliver: 1. A strategic frame for evidence-based adaptation decision-making. A pragmatic and standardised framework for decision making using comparable climate change impact assumptions, impact and adaptation costs while taking account of uncertainty. This will apply and combine smart and unconventional scientific methodologies. 2. Multi-level analysisas local administrative units, cities will be used to develop adaptation (and more generally sustainable development) strategies from the bottom-up/top-down, that can be aggregated to consider costs at the national, EU and international levels. 3. Quantification of adaptation costsa framework for assessment of full economic costs and benefits of adaptation (to date a woefully under-researched area). 4. Policy relevance and acceptance of adaptation measurescity case studies and stakeholder engagement will ensure the relevance of the framework for policy makers and ensure adaptation measures become better accepted by other stakeholders. The frameworks will be converted into a user-friendly guide for stakeholders who need to prioritize adaptation and mitigation decisions. This reduces costs and enhances understanding and acceptance of adaptation. The data will be fed into the European Clearinghouse Mechanism to increase transparency/stakeholder access.


Patent
Veolia and Sileane | Date: 2016-02-10

A selective sorting method in order to identify and sort material objects of different natures, sizes and shapes having the form of a pile is described. The method is characterized in that the choice of a gripping zone, associated with an object contained in the pile to be sorted, is carried out automatically, and in that the defining of the nature of the object associated with this gripping zone is carried out using at least one sensor that measures at least one electromagnetic radiation emitted by this object. A device able to implement such a method is also described.


Patent
Veolia | Date: 2016-02-10

A selective sorting method is described to identify and sort material objects of different natures, sizes and shapes having the form of a pile. The method is characterized in that the attribution of the nature of the object to be sorted includes in capturing at least one two-dimensional image wherein the object appears, using at least one sensor for electromagnetic radiation and in diffusing at least one of the two-dimensional images on a display screen that can be observed by an operator, the operator attributing a nature to the object viewed. A device able to implement the method is also described.


A wastewater treatment process that employs anaerobic granular sludge or biomass to remove chemical oxygen demand (COD) from the wastewater. Certain constituents, such as COD, nitrogen, calcium, other dissolved solids, suspended solids, can impair the effectiveness of the granular biomass. Thus, the process employs treatment units to remove these inhibiting constituents to produce a treated effluent or stream. At least a portion of the treated effluent is recycled and mixed with the influent wastewater to reduce the concentration of these inhibiting constituents.


A method of treating primary sludge and activated sludge produced by a wastewater system is disclosed. A portion of the activated sludge is wasted to form biological sludge. The biological sludge is thermally hydrolyzed. The method entails cooling the thermally hydrolyzed biological sludge by mixing primary sludge with the thermally hydrolyzed biological sludge. Thereafter, the combined sludge is directed through a pasteurization process and then to an anaerobic digester which performs anaerobic digestion of the combined sludge.


Patent
Veolia | Date: 2015-02-23

A rotary disc filter device includes a rotary drum and one or more disc-shaped filter members secured about the drum. Each disc-shaped filter member includes a filter and a filter support comprising a series of modules. The modules each include a base that is secured to the rotary drum and a support arm projecting outwardly from the base. The modules are interconnected and disposed around the rotary drum.

Loading Veolia collaborators
Loading Veolia collaborators