Entity

Time filter

Source Type


Gottardo S.,Venice Research Consortium CVR | Gottardo S.,University of Venice | Semenzin E.,Venice Research Consortium CVR | Giove S.,University of Venice | And 7 more authors.
Science of the Total Environment | Year: 2011

Water Framework Directive (WFD) requirements and recommendations for Ecological Status (ES) classification of surface water bodies do not address all issues that Member States have to face in the implementation process, such as selection of appropriate stressor-specific environmental indicators, definition of class boundaries, aggregation of heterogeneous data and information and uncertainty evaluation. In this context the "One-Out, All-Out" (OOAO) principle is the suggested approach to lead the entire classification procedure and ensure conservative results. In order to support water managers in achieving a more comprehensive and realistic evaluation of ES, an Integrated Risk Assessment (IRA) methodology was developed. It is based on the Weight of Evidence approach and implements a Fuzzy Inference System in order to hierarchically aggregate a set of environmental indicators, which are grouped into five Lines of Evidence (i.e. Biology, Chemistry, Ecotoxicology, Physico-chemistry and Hydromorphology). The whole IRA methodology has been implemented as an individual module into a freeware GIS (Geographic Information System)-based Decision Support System (DSS), named MODELKEY DSS. The paper focuses on the conceptual and mathematical procedure underlying the evaluation of the most complex Line of Evidence, i.e. Biology, which identifies the biological communities that are potentially at risk and the stressors that are most likely responsible for the observed alterations. The results obtained from testing the procedure through application of the MODELKEY DSS to the Llobregat case study are reported and discussed. © 2011 Elsevier B.V.


Gottardo S.,Venice Research Consortium CVR | Gottardo S.,University of Venice | Semenzin E.,Venice Research Consortium CVR | Giove S.,University of Venice | And 8 more authors.
Science of the Total Environment | Year: 2011

Many indicators and indices related to a variety of biological, physico-chemical, chemical, and hydromorphological water conditions have been recently developed or adapted by scientists in order to support water managers in the Water Framework Directive (WFD) implementation. In this context, the achievement of a comprehensive and reliable Ecological Status classification of water bodies across Europe is hampered by the lack of harmonised procedures for selecting an appropriate set of indicators and integrating heterogeneous information in a flexible way.To this purpose, an Integrated Risk Assessment (IRA). 22IRA: Integrated Risk Assessment. methodology was developed based on the Weight of Evidence approach. This method analyses and combines a set of environmental indicators grouped into five Lines of Evidence (LoE), i.e. Biology, Chemistry, Ecotoxicology, Physico-chemistry and Hydromorphology. The whole IRA methodology has been implemented as a specific module into a freeware GIS (Geographic Information System)-based Decision Support System, named MODELKEY DSS. This paper focuses on the evaluation of the four supporting LoE (i.e. Chemistry, Ecotoxicology, Physico-chemistry and Hydromorphology), and includes a procedure for a comparison of each indicator with proper thresholds and a subsequent integration process to combine the obtained output with the LoE Biology results in order to provide a single score expressing the Ecological Status classification. The approach supports the identification of the most prominent stressors, which are responsible for the observed alterations in the river basin under investigation. The results provided by the preliminary testing of the IRA methodology through application of the MODELKEY DSS to the Llobregat case study are finally reported and discussed. © 2011 Elsevier B.V.

Discover hidden collaborations