VectorLogics Inc

Fifth Street, United States

VectorLogics Inc

Fifth Street, United States

Time filter

Source Type

Van Zeeburg H.J.T.,VU University Amsterdam | Van Beusechem V.W.,VU University Amsterdam | Huizenga A.,VU University Amsterdam | Haisma H.J.,University of Groningen | And 4 more authors.
Journal of Gene Medicine | Year: 2010

Background: Head and neck squamous cell carcinomas develop in preneoplastic mucosal fields that can extend over several centimeters in diameter. Most of these fields are microscopically recognized as dysplasias. These fields are often not adequately treated and might cause local relapse. Previous investigations demonstrated that mouthwash therapy with oncolytic adenoviruses appears to be a good option for the treatment of these fields, although, at present, with limited efficacy. Methods: Immunohistochemistry on normal and preneoplastic mucosa was applied to determine the expression levels of the coxsackie adenoviral receptor (CAR) and a few surface antigens that might allow retargeting: Ly-6D, CD44v6 and K928. Monoclonal antibodies directed against these surface antigens were used for retargeting of adenoviruses in model experiments with organotypic cultures of mucosal epithelium. A bispecific single chain antibody was constructed against both the adenoviral knob and Ly-6D. Results: Immunohistochemical staining revealed that CAR is present only at a low level in the basal layers of the oral mucosa of both normal and dysplastic lesions. By contrast, Ly-6D, CD44v6 and K928 were abundantly expressed and Ly-6D even on the most superficial layers. Monoclonal antibodies against Ly-6D and CD44v6 were shown to enhance infection in an organotypic cell culture by one log. Based on these observations, we constructed a bispecific single chain antibody against Ly-6D and adenovirus fiber knob, and showed that this engineered molecule allows efficient CAR-independent infection. Conclusions: Retargeting of oncolytic adenovirus to other surface molecules might improve the efficacy of virotherapy of preneoplastic fields in the oral mucosa. Copyright © 2010 John Wiley & Sons, Ltd.


Hornyak A.,National Food Chain Safety Office | Lipinski K.S.,Vibalogics GmbH | Bakonyi T.,Szent Istvan University | Forgach P.,Szent Istvan University | And 8 more authors.
Journal of Gene Medicine | Year: 2015

Background: Despite spectacular successes in hepatitis B and C therapies, severe hepatic impairment is still a major treatment problem. The clinically tested infectious bursal disease virus (IBDV) superinfection therapy promises an innovative, interferon-free solution to this great unmet need, provided that a consistent manufacturing process preventing mutations or reversions to virulent strains is obtained. Methods: To address safety concerns, a tissue culture adapted IBDV vaccine strain V903/78 was cloned into cDNA plasmids ensuring reproducible production of a reverse engineered virus R903/78. The therapeutic drug candidate was characterized by immunocytochemistry assay, virus particle determination and immunoblot analysis. The biodistribution and potential immunogenicity of the IBDV agent was determined in mice, which is not a natural host of this virus, by quantitative detection of IBDV RNA by a quantitative reverse transcriptase-polymerase chain reaction and virus neutralization test, respectively. Results: Several human cell lines supported IBDV propagation in the absence of visible cytopathic effect. The virus was stable from pH8 to pH6 and demonstrated significant resistance to low pH and also proved to be highly resistant to high temperatures. No pathological effects were observed in mice. Single and multiple oral administration of IBDV elicited antibodies with neutralizing activities in vitro. Conclusions: Repeat oral administration of R903/78 was successful despite the presence of neutralizing antibodies. Single oral and intravenous administration indicated that IBDV does not replicate in mammalian liver alleviating some safety related concerns. These data supports the development of an orally delivered anti-hepatitis B virus/ anti-hepatitis C virus viral agent for human use. © 2015 John Wiley & Sons, Ltd.


Williams B.J.,The Feist Weiller Cancer Center | Bhatia S.,The Feist Weiller Cancer Center | Adams L.K.,The Feist Weiller Cancer Center | Boling S.,The Feist Weiller Cancer Center | And 8 more authors.
PLoS ONE | Year: 2012

Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs) with prostate specific membrane antigen (PSMA) have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Our goal was to improve upon cancer vaccination with tumor antigens by delivering PSMA via a CD40-targeted adenovirus vector directly to DCs as an efficient means for activation and antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells). To maximize antigen presentation in target cells, both MHC class I and TAP protein expression was induced in RM-1 cells by transduction with an Ad vector expressing interferon-gamma (Ad5-IFNγ). Administering DCs infected ex vivo with CD40-targeted Ad5-huPSMA, as well as direct intraperitoneal injection of the vector, resulted in high levels of tumor-specific CTL responses against RM-1-PSMA cells pretreated with Ad5-IFNγ as target cells. CD40 targeting significantly improved the therapeutic antitumor efficacy of Ad5-huPSMA encoding PSMA when combined with Ad5-IFNγ in the RM-1-PSMA model. These results suggest that a CD-targeted adenovirus delivering PSMA may be effective clinically for prostate cancer immunotherapy. © 2012 Williams et al.


Mathis J.M.,Health science Center | Bhatia S.,Health science Center | Khandelwal A.,Biomedical Research Foundation of Northwest Louisiana | Kovesdi I.,VectorLogics Inc. | And 5 more authors.
PLoS ONE | Year: 2011

As the limits of existing treatments for cancer are recognized, clearly novel therapies must be considered for successful treatment; cancer therapy using adenovirus vectors is a promising strategy. However tracking the biodistribution of adenovirus vectors in vivo is limited to invasive procedures such as biopsies, which are error prone, non-quantitative, and do not give a full representation of the pharmacokinetics involved. Current non-invasive imaging strategies using reporter gene expression have been applied to analyze adenoviral vectors. The major drawback to approaches that tag viruses with reporter genes is that these systems require initial viral infection and subsequent cellular expression of a reporter gene to allow non-invasive imaging. As an alternative to conventional vector detection techniques, we developed a specific genetic labeling system whereby an adenoviral vector incorporates a fusion between capsid protein IX and human metallothionein. Our study herein clearly demonstrates our ability to rescue viable adenoviral particles that display functional metallothionein (MT) as a component of their capsid surface. We demonstrate the feasibility of 99mTc binding in vitro to the pIX-MT fusion on the capsid of adenovirus virions using a simple transchelation reaction. SPECT imaging of a mouse after administration of a 99mTc-radiolabeled virus showed clear localization of radioactivity to the liver. This result strongly supports imaging using pIX-MT, visualizing the normal biodistribution of Ad primarily to the liver upon injection into mice. The ability we have developed to view real-time biodistribution in their physiological milieu represents a significant tool to study adenovirus biology in vivo. © 2011 Mathis et al.


Kovesdi I.,VectorLogics Inc | Hedley S.J.,VectorLogics Inc
Viruses | Year: 2010

Adenovirus (Ad) vectors, in particular those of the serotype 5, are highly for a wide range of gene therapy, vaccine and viro therapy applications (as discussed in further detail in this issue). Wild type Ad5 virus can replicate in numerous tissue types but to use Ad vectors for therapeutic purposes the viral genome requires modification. In particular, if the viral genome is modified in such a way that the viral life cycle is interfered with, a specific producer cell line is required to provide trans complementation to overcome the modification and allow viral production. This can occur in two ways; use of a producer cell line that contains specific adenoviral sequences incorporated into the cell genome to trans-complement, or use of a producer cell line that naturally complements for the modified Ad vector genome. This review concentrates on producer cell lines that complement non-replicating adenoviral vectors, starting with the historical HEK293 cell line developed in 1977 for first generation Ad vectors. In addition the problem of replication-competent adenovirus (RCA) contamination in viral preparations from HEK293 cells is addressed leading to the development of alternate cell lines. Furthermore novel cell lines for more complex Ad vectors and alternate serotype Ad vectors are discussed. © 2010 by the authors.


PubMed | VectorLogics Inc.
Type: Journal Article | Journal: Viruses | Year: 2011

Adenovirus (Ad) vectors, in particular those of the serotype 5, are highly attractive for a wide range of gene therapy, vaccine and virotherapy applications (as discussed in further detail in this issue). Wild type Ad5 virus can replicate in numerous tissue types but to use Ad vectors for therapeutic purposes the viral genome requires modification. In particular, if the viral genome is modified in such a way that the viral life cycle is interfered with, a specific producer cell line is required to provide trans-complementation to overcome the modification and allow viral production. This can occur in two ways; use of a producer cell line that contains specific adenoviral sequences incorporated into the cell genome to trans-complement, or use of a producer cell line that naturally complements for the modified Ad vector genome. This review concentrates on producer cell lines that complement non-replicating adenoviral vectors, starting with the historical HEK293 cell line developed in 1977 for first generation Ad vectors. In addition the problem of replication-competent adenovirus (RCA) contamination in viral preparations from HEK293 cells is addressed leading to the development of alternate cell lines. Furthermore novel cell lines for more complex Ad vectors and alternate serotype Ad vectors are discussed.

Loading VectorLogics Inc collaborators
Loading VectorLogics Inc collaborators