Entity

Time filter

Source Type

Palo Alto, CA, United States

Varian Medical Systems of Palo Alto, California, is an American manufacturer of medical devices, such as linear accelerators and software for treating cancer and other medical conditions with radiotherapy, radiosurgery, proton therapy, and brachytherapy. The company supplies informatics software for managing comprehensive cancer clinics, radiotherapy centers and medical oncology practices. Varian is a supplier of tubes and digital detectors for X-ray imaging in medical, scientific, and industrial applications and also supplies X-ray imaging products for cargo screening and industrial inspection. Varian Medical Systems employs approximately 6,350 people at manufacturing sites in North America, Europe, and China and approximately 70 sales and support offices around the world. Wikipedia.


Patent
Varian Medical Systems | Date: 2015-02-25

Disclosed are radiation treatment systems with enhanced control architectures that enable more complex treatment plans to be implemented, and radiation treatment systems with enhanced resistance to the effect of neutrons. An exemplary control architectures comprises: a digital packet network; a supervisor electrically coupled to the digital packet network and having a treatment plan; and a plurality of nodes, each node coupled to digital packet network and controlling one or more treatment-related components of the radiation treatment system; and wherein the supervisor periodically communicates control orders to the nodes over the digital packet network.


Accelerator based systems are disclosed for the generation of isotopes, such as molybdenum-98 (99Mo) and metastable technetium-99 (99mTc) from molybdenum-98 (98Mo). Multilayer targets are disclosed for use in the system and other systems to generate 99mTc and 98Mo, and other isotopes. In one example a multilayer target comprises a first, inner target of 98Mo surrounded, at least in part, by a separate, second outer layer of 98Mo. In another example, a first target layer of molybdenum-100 is surrounded, at least in part, by a second target layer of 98Mo. In another example, a first inner target comprises a Bremsstrahlung target material surrounded, at least in part, by a second target layer of molybdenum-100, surrounded, at least in part, by a third target layer of 98Mo.


The present system and method for simulating particles and waves is useful for calculations involving nuclear and full spectrum radiation transport, quantum particle transport, plasma transport and charged particle transport. The invention provides a mechanism for creating accurate invariants for embedding in general three-dimensional problems and describes means by which a series of simple single collision interaction finite elements can be extended to formulate a complex multi-collision finite element.


Patent
Varian Medical Systems | Date: 2015-05-08

In a reference signal distribution system, a first subsystem is configured to distribute a reference signal to a second subsystem. The first subsystem includes multiple diode-connected devices biased by a reference current and configured to establish a differential voltage between a first node and a second node. The second subsystem includes multiple diode-connected devices driven by the differential voltage and configured to generate a copy current associated with the reference current.


Patent
Varian Medical Systems | Date: 2015-06-22

A shape similarity metric can be provided that indicates how similar two or more shapes are. A difference between a union of the shapes and an intersection of the shapes can be used to determine the similarity metric. The shape similarity metric can provide an average distance between the shapes. Different processes for determining shapes can be evaluated for accuracy based on the shape similarity metric. New or alternative shape-determining processes can be compared for accuracy against other shape-determining processes including reference shape-determining processes. Shape similarity metrics can be determined for two-dimensional shapes and three-dimensional shapes.

Discover hidden collaborations