Time filter

Source Type

Palo Alto, CA, United States

Varian, Inc. was one of the largest manufacturers of scientific instruments for the scientific industry. They had offerings over a broad range of chemical analysis equipment, with a particular focus on Information Rich DetectionTemplate:Huh? and Vacuum technology. Varian was spun off from Varian Associates in 1999 and was purchased by Agilent Technologies in May 2010 for $1.5 billion, or $52 per share.Varian Inc. had its corporate headquarters in Palo Alto, California, and offices in Australia, the Benelux countries, Brazil, Canada, China, Germany, France, Italy, Japan, Korea, Russia, Sweden, Taiwan, the United Kingdom, and the United States. Wikipedia.

Varian, Inc | Date: 2015-02-09

A method of processing a solar cell is disclosed, where a chained patterned ion implant is performed to create a workpiece having a lightly doped surface having more heavily doped regions. This configuration may be used in various embodiments, such as for selective emitter solar cells. Additionally, various mask sets that can be used to create this desired pattern are also disclosed. The mask set may include one or more masks that have an open portion and a patterned portion, where the union of the open portions of the masks comprises the entirety of the surface to be implanted. The patterned portions of the masks combine to create the desired pattern of heavily doped regions.

Varian, Inc | Date: 2015-11-23

A plasma chamber having improved controllability of the ion density of the extracted ribbon ion beam is disclosed. A plurality of pairs of RF biased electrodes is disposed on opposite sides of the extraction aperture in a plasma chamber. In some embodiments, one of each pair of RF biased electrodes is biased at the extraction voltage, while the other of each pair is coupled to a RF bias power supply, which provides a RF voltage having a DC component and an AC component. In another embodiment, both of the electrodes in each pair are coupled to a RF biased power supply. A blocker may be disposed in the plasma chamber near the extraction aperture. In some embodiments, RF biased electrodes are disposed on the blocker.

Varian, Inc | Date: 2015-10-08

A system and method for processing a workpiece is disclosed. A plasma chamber is used to create a ribbon ion beam, extracted through an extraction aperture. A workpiece is translated proximate the extraction aperture so as to expose different portions of the workpiece to the ribbon ion beam. As the workpiece is being exposed to the ribbon ion beam, at least one parameter associated with the plasma chamber is varied. The variable parameters include extraction voltage duty cycle, workpiece scan velocity and the shape of the ion beam. In some embodiments, after the entire workpiece has been exposed to the ribbon ion beam, the workpiece is rotated and exposed to the ribbon ion beam again, while the parameters are varied. This sequence may be repeated a plurality of times.

A planar end effector and method of making a planar end effector. The method may include the steps of applying adhesive to a first side of a first sheet, the first sheet having a second side opposite the first side, and disposing a first side of a second sheet on the adhesive, the second sheet having a second side opposite the first side, wherein the first sides of the first and second sheets confront each other and define an at least partially adhesive-filled bond-gap therebetween and wherein the second sides of the first and second sheets are parallel with one another. The method may further include the steps of curing the adhesive to produce a planar composite workpiece including the first sheet, the second sheet, and an intermediate adhesive layer, and cutting the end effector from the composite workpiece.

Techniques for diamond nucleation control for thin film processing are disclosed. In one particular embodiment, the techniques may be realized as a method for generating a plasma having a plurality of ions; depositing a plurality of diamond nucleation centers on a substrate with the ions in the plasma using an extraction plate having at least one gap, wherein the plasma ions pass through the at least one gap in the extraction plate to generate a focused ion beam to deposit the plurality of diamond nucleation centers; and controlling the growth of a continuous diamond film from the diamond nucleation centers on the substrate by controlling at least one of a temperature around the substrate, a temperature of the plasma, a pressure around the substrate, and a concentration of the ions in the plasma.

Discover hidden collaborations