Palo Alto, CA, United States
Palo Alto, CA, United States

Varian, Inc. was one of the largest manufacturers of scientific instruments for the scientific industry. They had offerings over a broad range of chemical analysis equipment, with a particular focus on Information Rich DetectionTemplate:Huh? and Vacuum technology. Varian was spun off from Varian Associates in 1999 and was purchased by Agilent Technologies in May 2010 for $1.5 billion, or $52 per share.Varian Inc. had its corporate headquarters in Palo Alto, California, and offices in Australia, the Benelux countries, Brazil, Canada, China, Germany, France, Italy, Japan, Korea, Russia, Sweden, Taiwan, the United Kingdom, and the United States. Wikipedia.


Time filter

Source Type

Patent
Varian, Inc | Date: 2016-03-15

An apparatus for creating an angled ion beam for implanting into a substrate is disclosed. The apparatus includes a plasma chamber in which plasma is created. The extraction aperture includes a plurality of rotatable plates. Ion beamlets are extracted through apertures defined by the plurality of rotatable plates. The degree to which these plates are rotated determines the angle of extraction for the extracted ion beam. These plates may be formed in a plurality of different shapes, which may increase the maximum extraction angle that is achievable. Additionally, electrodes may be disposed near the plates to affect the extraction angle.


Methods of affecting a materials properties through the implantation of ions, such as by using a plasma processing apparatus with a plasma sheath modifier. In this way, properties such as resistance to chemicals, adhesiveness, hydrophobicity, and hydrophilicity, may be affected. These methods can be applied to a variety of technologies. In some cases, ion implantation is used in the manufacture of printer heads to reduce clogging by increasing the materials hydrophobicity. In other embodiments, MEMS and NEMS devices are produced using ion implantation to change the properties of fluid channels and other structures. In addition, ion implantation can be used to affect a materials resistance to chemicals, such as acids.


Patent
Varian, Inc | Date: 2016-05-26

A rotary union is disclosed for use in semiconductor processing applications. The rotary is coupled between a platen base and a platen of a rotating platen assembly. The rotary union includes a coiled flexible tube member for passing a flow of cryogenic fluid to the platen for cooling during an ion implant procedure. The coiled flexible tube member has a first configuration associated with a non-rotated position of the platen and a second configuration associated with a rotated position of the platen. In the first configuration the coiled flexible tube member has a first bend radius, and in the second configuration the coiled flexible tube member has a second bend radius that is smaller than first bend radius. The rotary union also includes a base with a peripheral wall that restricts movement of the coiled flexible tube member as it cycles between the first and second configurations.


Patent
Varian, Inc | Date: 2016-06-07

An ion implanter has a coating of low resistivity silicon carbide on one or more of the conductive surfaces that are exposed to ions. For example, ions are generated in an ion source chamber, and the interior surfaces of the walls are coated with low resistivity silicon carbide. Since silicon carbide is hard and resistant to sputtering, this may reduce the amount of contaminant ions that are introduced into the ion beam that is extracted from the ion source chamber. In some embodiments, the extraction electrodes are also coated with silicon carbide to reduce the contaminant ions introduced by these components.


Patent
Varian, Inc | Date: 2016-09-12

A system includes a first electrode to receive an ion beam, a second electrode to receive the ion beam after passing through the first electrode, the first and second electrode forming an upstream gap defined by a convex surface on one of the first or second electrode and concave surface on the other electrode, a third electrode to receive the ion beam after passing through the second electrode, wherein the second and third electrode form a downstream gap defined by a convex surface on one of the second or third electrode and concave surface on the other electrode, wherein the second electrode has either two concave surfaces or two convex surfaces; and a voltage supply system to independently supply voltage signals to the first, second and third electrode, that accelerate and decelerate the ion beam as it passes through the first, second, and third electrode.


A method may include providing a substrate having a surface that defines a substrate plane and a substrate feature that extends from the substrate plane; directing an ion beam comprising angled ions to the substrate at a non-zero angle with respect to a perpendicular to the substrate plane, wherein a first portion of the substrate feature is exposed to the ion beam and wherein a second portion of the substrate feature is not exposed to the ion beam; directing molecules of a molecular species to the substrate wherein the molecules of the molecular species cover the substrate feature; and providing a second species to react with the molecular species, wherein selective growth of a layer comprising the molecular species and the second species takes place such that a first thickness of the layer grown on the first portion is different from a second thickness grown on the second portion.


Patent
Varian, Inc | Date: 2016-09-13

In one embodiment, a method for etching a copper layer disposed on a substrate includes directing reactive ions to the substrate when a mask that defines an exposed area and protected area is disposed on the copper layer, wherein an altered layer is generated in the exposed area comprising a chemically reactive material; and exposing the copper layer to a molecular species that is effective to react with the chemically reactive material so as to remove the altered layer.


Patent
Varian, Inc | Date: 2016-06-06

A thermal shield is disclosed that may be disposed between a heated electrostatic chuck and a base. The thermal shield comprises a thermal insulator, such as a polyimide film, having a thickness of between 1 and 5 mils. The polyimide film is coated on one side with a layer of reflective material, such as aluminum. The layer of reflective material may be between 30 and 100 nanometers. The thermal shield is disposed such that the layer of reflective material is closer to the chuck. Because of the thinness of the layer of reflective material, the thermal shield does not retain a significant amount of heat. Further, the temperature of the thermal shield remains far below the glass transition temperature of the polyimide film.


A processing apparatus may include a plasma source coupled to a plasma chamber to generate a plasma in the plasma chamber, an extraction plate having an aperture disposed along a side of the plasma chamber; a deflection electrode disposed proximate the aperture and configured to define a pair of plasma menisci when the plasma is present in the plasma chamber; and a deflection electrode power supply to apply a bias voltage to the deflection electrode with respect to the plasma, wherein a first bias voltage applied to the deflection electrode is configured to generate a first angle of incidence for ions extracted through the aperture from the plasma, and a second bias voltage applied to the deflection electrode is configured to generate a second angle of incidence of ions extracted through the aperture from the plasma, the second angle of incidence being different from the first angle of incidence.


Patent
Varian, Inc | Date: 2016-08-03

Substrate processing systems, such as ion implantation systems, deposition systems and etch systems, having textured silicon liners are disclosed. The silicon liners are textured using a chemical treatment that produces small features, referred to as micropyramids, which may be less than 20 micrometers in height. Despite the fact that these micropyramids are much smaller than the textured features commonly found in graphite liners, the textured silicon is able to hold deposited coatings and resist flaking. Methods for performing preventative maintenance on these substrate processing systems are also disclosed.

Loading Varian, Inc collaborators
Loading Varian, Inc collaborators