Vancouver Aquarium Marine Science Center

Vancouver, Canada

Vancouver Aquarium Marine Science Center

Vancouver, Canada
Time filter
Source Type

Stewart J.S.,Stanford University | Gilly W.F.,Stanford University | Field J.C.,SWFSC NMFS NOAA | Payne J.C.,Vancouver Aquarium Marine Science Center
Deep-Sea Research Part II: Topical Studies in Oceanography | Year: 2013

Jumbo squid (Dosidicus gigas) have greatly extended their range in the California Current System, where they forage on a variety of ecologically and economically important species that inhabit both coastal and offshore mesopelagic regions. Swimming abilities and behavior are important factors in assessing the impacts of this range expansion, particularly in regard to foraging in conjunction with onshore-offshore movement over the continental shelf. Here we describe a study of horizontal movements by jumbo squid along and across the continental shelf off Washington, USA, using acoustic tags in association with the Census of Marine Life's Pacific Ocean Shelf Tracking Program (POST) receiver arrays. We detected frequent movements along the shelf break, movement onto the shelf at night, and no evidence of movement as a cohesive school. Our results demonstrate feasibility of using acoustic tags and arrays to document horizontal movements of jumbo squid along and across the continental shelf. This is important in order to determine how those movements overlap with those of other ecologically and commercially important fish species. © 2012 Elsevier Ltd.

Lachmuth C.L.,University of British Columbia | Lachmuth C.L.,Vancouver Aquarium Marine Science Center | Barrett-Lennard L.G.,University of British Columbia | Barrett-Lennard L.G.,Vancouver Aquarium Marine Science Center | And 2 more authors.
Marine Pollution Bulletin | Year: 2011

Southern resident killer whales in British Columbia and Washington are exposed to heavy vessel traffic. This study investigates their exposure to exhaust gases from whale-watching vessels by using a simple dispersion model incorporating data on whale and vessel behavior, atmospheric conditions, and output of airborne pollutants from the whale-watching fleet based on emissions data from regulatory agencies.Our findings suggest that current whale-watching guidelines are usually effective in limiting pollutant exposure to levels at or just below those at which measurable adverse health effects would be expected in killer whales. However, safe pollutant levels are exceeded under worst-case conditions and certain average-case conditions. To reduce killer whale exposure to exhaust we recommend: vessels position on the downwind side of whales, a maximum of 20 whale-watching vessels should be within 800. m at any given time, viewing periods should be limited, and current whale-watch guidelines and laws should be enforced. © 2011.

Parsons K.M.,National Oceanic and Atmospheric Administration | Durban J.W.,National Oceanic and Atmospheric Administration | Burdin A.M.,Russian Academy of Sciences | Burkanov V.N.,National Oceanic and Atmospheric Administration | And 7 more authors.
Journal of Heredity | Year: 2013

The difficulties associated with detecting population boundaries have long constrained the conservation and management of highly mobile, wide-ranging marine species, such as killer whales (Orcinus orca). In this study, we use data from 26 nuclear microsatellite loci and mitochondrial DNA sequences (988bp) to test a priori hypotheses about population subdivisions generated from a decade of killer whale surveys across the northern North Pacific. A total of 462 remote skin biopsies were collected from wild killer whales primarily between 2001 and 2010 from the northern Gulf of Alaska to the Sea of Okhotsk, representing both the piscivorous "resident" and the mammal-eating "transient" (or Bigg's) killer whales. Divergence of the 2 ecotypes was supported by both mtDNA and microsatellites. Geographic patterns of genetic differentiation were supported by significant regions of genetic discontinuity, providing evidence of population structuring within both ecotypes and corroborating direct observations of restricted movements of individual whales. In the Aleutian Islands (Alaska), subpopulations, or groups with significantly different mtDNA and microsatellite allele frequencies, were largely delimited by major oceanographic boundaries for resident killer whales. Although Amchitka Pass represented a major subdivision for transient killer whales between the central and western Aleutian Islands, several smaller subpopulations were evident throughout the eastern Aleutians and Bering Sea. Support for seasonally sympatric transient subpopulations around Unimak Island suggests isolating mechanisms other than geographic distance within this highly mobile top predator. © 2013 Published by Oxford University Press on behalf of the American Genetic Association 2013. This work is written by (a) US Government employee(s) and is in the public domain in the US.

O'Dor R.,Dalhousie University | Stewart J.,Stanford University | Gilly W.,Stanford University | Payne J.,Vancouver Aquarium Marine Science Center | And 2 more authors.
Deep-Sea Research Part II: Topical Studies in Oceanography | Year: 2013

Squid not only swim, they can also fly like rockets, accelerating through the air by forcefully expelling water out of their mantles. Using available lab and field data from four squid species, Sthenoteuthis pteropus, Dosidicus gigas, Illex illecebrosus and Loligo opalescens, including sixteen remarkable photographs of flying S. pteropus off the coast of Brazil, we compared the cost of transport in both water and air and discussed methods of maximizing power output through funnel and mantle constriction. Additionally we found that fin flaps develop at approximately the same size range as flight behaviors in these squids, consistent with previous hypotheses that flaps could function as ailerons whilst aloft. S. pteropus acceleration in air (265 body lengths [BL]/s2; 24.5m/s2) was found to exceed that in water (79BL/s2) three-fold based on estimated mantle length from still photos. Velocities in air (37BL/s; 3.4m/s) exceed those in water (11BL/s) almost four-fold. Given the obvious advantages of this extreme mode of transport, squid flight may in fact be more common than previously thought and potentially employed to reduce migration cost in addition to predation avoidance. Clearly squid flight, the role of fin flaps and funnel, and the energetic benefits are worthy of extended investigation. © 2012 Elsevier Ltd.

Filatova O.A.,Moscow State University | Deecke V.B.,University of St. Andrews | Deecke V.B.,Vancouver Aquarium Marine Science Center | Ford J.K.B.,Canadian Department of Fisheries and Oceans | And 6 more authors.
Animal Behaviour | Year: 2012

Although killer whale, Orcinus orca, dialects have been studied in detail in several populations, little attempt has been made to compare dialect characteristics between populations. In this study we investigated geographical variation in monophonic and biphonic calls among four resident populations from the North Pacific Ocean: Northern and Southern residents from British Columbia and Washington State, southern Alaska residents, and eastern Kamchatka residents. We tested predictions generated by the hypothesis that call variation across populations is the result of an accumulation of random errors and innovation by vertical cultural transmission. Call frequency contours were extracted and compared using a dynamic time-warping algorithm. We found that the diversity of monophonic calls was substantially higher than that of biphonic calls for all populations. Repertoire diversity appeared to be related to population size: in larger populations, monophonic calls were more diverse and biphonic calls less diverse. We suggest that the evolution of both monophonic and biphonic calls is caused by an interaction between stochastic processes and directional selection, but the relative effect of directional selection is greater for biphonic calls. Our analysis revealed no direct correlation between call repertoire similarity and geographical distance. Call diversity within predefined call categories, types and subtypes, showed a high degree of correspondence between populations. Our results indicate that dialect evolution is a complex process influenced by an interaction among directional selection, horizontal transmission and founder effects. We suggest several scenarios for how this might have arisen and the implications of these scenarios for call evolution and population history. © 2011 The Association for the Study of Animal Behaviour.

Filatova O.A.,Moscow State University | Ford J.K.B.,Canadian Department of Fisheries and Oceans | Matkin C.O.,Gulf | Barrett-Lennard L.G.,Vancouver Aquarium Marine Science Center | And 2 more authors.
Journal of the Acoustical Society of America | Year: 2012

Ultrasonic whistles were previously found in North Atlantic killer whales and were suggested to occur in eastern North Pacific killer whales based on the data from autonomous recorders. In this study ultrasonic whistles were found in the recordings from two encounters with the eastern North Pacific offshore ecotype killer whales and one encounter with the western North Pacific killer whales of unknown ecotype. All ultrasonic whistles were highly stereotyped and all but two had downsweep contours. These results demonstrate that specific sound categories can be shared by killer whales from different ocean basins. © 2012 Acoustical Society of America.

PubMed | University of Turku, University of California at Irvine, University of Massachusetts Amherst, University of Pretoria and 14 more.
Type: Comment | Journal: Regulatory toxicology and pharmacology : RTP | Year: 2015

We present a detailed response to the critique of State of the Science of Endocrine Disrupting Chemicals 2012 (UNEP/WHO, 2013) by financial stakeholders, authored by Lamb et al. (2014). Lamb et al.s claim that UNEP/WHO (2013) does not provide a balanced perspective on endocrine disruption is based on incomplete and misleading quoting of the report through omission of qualifying statements and inaccurate description of study objectives, results and conclusions. Lamb et al. define extremely narrow standards for synthesizing evidence which are then used to dismiss the UNEP/WHO 2013 report as flawed. We show that Lamb et al. misuse conceptual frameworks for assessing causality, especially the Bradford-Hill criteria, by ignoring the fundamental problems that exist with inferring causality from empirical observations. We conclude that Lamb et al.s attempt of deconstructing the UNEP/WHO (2013) report is not particularly erudite and that their critique is not intended to be convincing to the scientific community, but to confuse the scientific data. Consequently, it promotes misinterpretation of the UNEP/WHO (2013) report by non-specialists, bureaucrats, politicians and other decision makers not intimately familiar with the topic of endocrine disruption and therefore susceptible to false generalizations of bias and subjectivity.

PubMed | Whale and Dolphin Conservation, Gulf, Moscow State University, Canadian Department of Fisheries and Oceans and 4 more.
Type: Comparative Study | Journal: The Journal of the Acoustical Society of America | Year: 2015

Killer whale populations may differ in genetics, morphology, ecology, and behavior. In the North Pacific, two sympatric populations (resident and transient) specialize on different prey (fish and marine mammals) and retain reproductive isolation. In the eastern North Atlantic, whales from the same populations have been observed feeding on both fish and marine mammals. Fish-eating North Pacific residents are more genetically related to eastern North Atlantic killer whales than to sympatric mammal-eating transients. In this paper, a comparison of frequency variables in killer whale calls recorded from four North Pacific resident, two North Pacific transient, and two eastern North Atlantic populations is reported to assess which factors drive the large-scale changes in call structure. Both low-frequency and high-frequency components of North Pacific transient killer whale calls have significantly lower frequencies than those of the North Pacific resident and North Atlantic populations. The difference in frequencies could be related to ecological specialization or to the phylogenetic history of these populations. North Pacific transient killer whales may have genetically inherited predisposition toward lower frequencies that may shape their learned repertoires.

PubMed | Whale and Dolphin Conservation, Gulf, JASCO Research Ltd., Moscow State University and 4 more.
Type: Journal Article | Journal: The Journal of the Acoustical Society of America | Year: 2016

Odontocete sounds are produced by two pairs of phonic lips situated in soft nares below the blowhole; the right pair is larger and is more likely to produce clicks, while the left pair is more likely to produce whistles. This has important implications for the cultural evolution of delphinid sounds: the greater the physical constraints, the greater the probability of random convergence. In this paper the authors examine the call structure of eight killer whale populations to identify structural constraints and to determine if they are consistent among all populations. Constraints were especially pronounced in two-voiced calls. In the calls of all eight populations, the lower component of two-voiced (biphonic) calls was typically centered below 4kHz, while the upper component was typically above that value. The lower component of two-voiced calls had a narrower frequency range than single-voiced calls in all populations. This may be because some single-voiced calls are homologous to the lower component, while others are homologous to the higher component of two-voiced calls. Physical constraints on the call structure reduce the possible variation and increase the probability of random convergence, producing similar calls in different populations.

PubMed | University of Winnipeg, Assiniboine Park Zoo, Copenhagen University, Gulf and 9 more.
Type: Journal Article | Journal: Molecular ecology | Year: 2015

Global climate change during the Late Pleistocene periodically encroached and then released habitat during the glacial cycles, causing range expansions and contractions in some species. These dynamics have played a major role in geographic radiations, diversification and speciation. We investigate these dynamics in the most widely distributed of marine mammals, the killer whale (Orcinus orca), using a global data set of over 450 samples. This marine top predator inhabits coastal and pelagic ecosystems ranging from the ice edge to the tropics, often exhibiting ecological, behavioural and morphological variation suggestive of local adaptation accompanied by reproductive isolation. Results suggest a rapid global radiation occurred over the last 350000years. Based on habitat models, we estimated there was only a 15% global contraction of core suitable habitat during the last glacial maximum, and the resources appeared to sustain a constant global effective female population size throughout the Late Pleistocene. Reconstruction of the ancestral phylogeography highlighted the high mobility of this species, identifying 22 strongly supported long-range dispersal events including interoceanic and interhemispheric movement. Despite this propensity for geographic dispersal, the increased sampling of this study uncovered very few potential examples of ancestral dispersal among ecotypes. Concordance of nuclear and mitochondrial data further confirms genetic cohesiveness, with little or no current gene flow among sympatric ecotypes. Taken as a whole, our data suggest that the glacial cycles influenced local populations in different ways, with no clear global pattern, but with secondary contact among lineages following long-range dispersal as a potential mechanism driving ecological diversification.

Loading Vancouver Aquarium Marine Science Center collaborators
Loading Vancouver Aquarium Marine Science Center collaborators