Time filter

Source Type

Gregori J.,Vall dHebron Institute Recerca Hospital Universitari Vall dHebron | Gregori J.,Hoffmann-La Roche | Esteban J.I.,Vall dHebron Institute Recerca Hospital Universitari Vall dHebron | Esteban J.I.,CIBER ISCIII | And 19 more authors.
PLoS ONE | Year: 2013

We have investigated the reliability and reproducibility of HCV viral quasispecies quantification by ultra-deep pyrosequencing (UDPS) methods. Our study has been divided in two parts. First of all, by UDPS sequencing of clone mixes samples we have established the global noise level of UDPS and fine tuned a data treatment workflow previously optimized for HBV sequence analysis. Secondly, we have studied the reproducibility of the methodology by comparing 5 amplicons from two patient samples on three massive sequencing platforms (FLX+, FLX and Junior) after applying the error filters developed from the clonal/control study. After noise filtering the UDPS results, the three replicates showed the same 12 polymorphic sites above 0.7%, with a mean CV of 4.86%. Two polymorphic sites below 0.6% were identified by two replicates and one replicate respectively. A total of 25, 23 and 26 haplotypes were detected by GS-Junior, GS-FLX and GS-FLX+. The observed CVs for the normalized Shannon entropy (Sn), the mutation frequency (Mf), and the nucleotidic diversity (Pi) were 1.46%, 3.96% and 3.78%. The mean absolute difference in the two patients (5 amplicons each), in the GS-FLX and GS-FLX+, were 1.46%, 3.96% and 3.78% for Sn, Mf and Pi. No false polymorphic site was observed above 0.5%. Our results indicate that UDPS is an optimal alternative to molecular cloning for quantitative study of HCV viral quasispecies populations, both in complexity and composition. We propose an UDPS data treatment workflow for amplicons from the RNA viral quasispecies which, at a sequencing depth of at least 10,000 reads per strand, enables to obtain sequences and frequencies of consensus haplotypes above 0.5% abundance with no erroneous mutations, with high confidence, resistant mutants as minor variants at the level of 1%, with high confidence that variants are not missed, and highly confident measures of quasispecies complexity. © 2013 Gregori et al.


Cubero M.,Vall dHebron Institute Recerca Hospital Universitari Vall dHebron | Cubero M.,Hoffmann-La Roche | Gregori J.,Vall dHebron Institute Recerca Hospital Universitari Vall dHebron | Gregori J.,Hoffmann-La Roche | And 27 more authors.
Liver International | Year: 2014

Background & Aims: Hepatitis C virus (HCV) transmission from a chronic patient to a susceptible individual is a good opportunity to study viral and host factors that may influence the natural course of hepatitis C infection towards either spontaneous recovery or chronicity. To compare a documented case of a bottleneck event in the sexual transmission of HCV from a chronically infected patient to a recipient host that cleared infection. Methods: Host genetic components such as Class I and II HLA and IL28B polymorphism (rs12979860 SNPs) were identified by direct sequencing and LightMix analysis, respectively. Deep nucleotide sequence analysis of quasispecies complexity was performed using massive pyrosequencing platform (454 GS-FLX), and the CD4 specific immune response was characterized by ELISPOT. Results and Conclusions: Sequencing analysis and CD4 response highlighted several NS3-helicase domains in which an interplay between amino acid variability and CD4 immune response might have contributed either to chronicity in the donor patient or to viral clearance in the receptor (newly infected) patient. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.


Carnero E.,University of Navarra | Diez J.,University Pompeu Fabra | Fortes P.,University of Navarra | Gastaminza P.,CSIC - National Center for Biotechnology | And 10 more authors.
Gastroenterologia y Hepatologia | Year: 2013

The hepatitis C virus (HCV) was discovered by the team of Michael Houghton at Chiron Corporation in 1989 and the first symposium on HCV and related viruses was held in Venice, Italy, shortly after, in 1992. This conference was organized to advance knowledge on what then was a mysterious virus responsible for most cases of «non-A, non-B» hepatitis. During the 20 years since the first conference, the scientific quality of presentations has steadily increased, together with the tremendous advances in basic and clinical research and epidemiology. What started as a small conference on a new virus, about which there were very few data, has today become a first-in-class congress: a meeting place for basic researchers, clinicians, epidemiologists, public health experts, and industry members to present the most important advances and their application to HCV treatment and control. The nineteenth HCV symposium was held in September 2012, once again in Venice. © 2013 Elsevier España, S.L. and AEEH y AEG.


PubMed | Hoffmann-La Roche, Vall dHebron Institute Recerca Hospital Universitari Vall dHebron, Autonomous University of Barcelona and CIBER ISCIII
Type: Journal Article | Journal: PloS one | Year: 2014

We have investigated the reliability and reproducibility of HCV viral quasispecies quantification by ultra-deep pyrosequencing (UDPS) methods. Our study has been divided in two parts. First of all, by UDPS sequencing of clone mixes samples we have established the global noise level of UDPS and fine tuned a data treatment workflow previously optimized for HBV sequence analysis. Secondly, we have studied the reproducibility of the methodology by comparing 5 amplicons from two patient samples on three massive sequencing platforms (FLX+, FLX and Junior) after applying the error filters developed from the clonal/control study. After noise filtering the UDPS results, the three replicates showed the same 12 polymorphic sites above 0.7%, with a mean CV of 4.86%. Two polymorphic sites below 0.6% were identified by two replicates and one replicate respectively. A total of 25, 23 and 26 haplotypes were detected by GS-Junior, GS-FLX and GS-FLX+. The observed CVs for the normalized Shannon entropy (Sn), the mutation frequency (Mf), and the nucleotidic diversity (Pi) were 1.46%, 3.96% and 3.78%. The mean absolute difference in the two patients (5 amplicons each), in the GS-FLX and GS-FLX+, were 1.46%, 3.96% and 3.78% for Sn, Mf and Pi. No false polymorphic site was observed above 0.5%. Our results indicate that UDPS is an optimal alternative to molecular cloning for quantitative study of HCV viral quasispecies populations, both in complexity and composition. We propose an UDPS data treatment workflow for amplicons from the RNA viral quasispecies which, at a sequencing depth of at least 10,000 reads per strand, enables to obtain sequences and frequencies of consensus haplotypes above 0.5% abundance with no erroneous mutations, with high confidence, resistant mutants as minor variants at the level of 1%, with high confidence that variants are not missed, and highly confident measures of quasispecies complexity.

Loading Vall dHebron Institute Recerca Hospital Universitari Vall dHebron collaborators
Loading Vall dHebron Institute Recerca Hospital Universitari Vall dHebron collaborators