Time filter

Source Type

PubMed | Vaccine Research Institute of San Diego San Diego
Type: Journal Article | Journal: American journal of cancer research | Year: 2011

Intra-Vital Microscopy (IVM) is used to visualize tumors in animals and analyze various aspects of cancer physiology such as tumor vascularization, cell migration and metastasis. The main advantages of IVM include the real -time analysis of dynamic processes with single-cell resolution. The application of IVM, however, is limited by the availability of animal models that carry visually accessible tumors. These models have evolved over time to become more and more relevant to human tumors. The latest step is the development of a pseudo-orthotopic, syngeneic model for tumor growth and metastasis. In this model, tissue from a variety of mouse organs are grafted in a dorsal skinfold chamber and allowed to revascularize, whereupon tumor cell spheroids are implanted. These spheroids develop into tumors that bear a much closer resemblance to human tumors than xenografts. Unlike xenografts, the vasculature is well-ordered and, because the model is syngeneic, there are no cross-species host immune reactions. The use of fluorescence-tagged pseudo-organs and tumor cells allows IVM analysis and provides real-time access to the development of tumors that closely resemble the real disease. This model can be used to test therapeutics and to image tumor development and stroma-tumor interactions.

Loading Vaccine Research Institute of San Diego San Diego collaborators
Loading Vaccine Research Institute of San Diego San Diego collaborators