Time filter

Source Type

Sharma R.C.,ICARDA | Rajaram S.,ICARDA | Alikulov S.,Uzbek Research Institute of Plant Industry | Ziyaev Z.,Uzbek Research Institute of Plant Industry | And 13 more authors.
Euphytica | Year: 2013

High grain yield and resistance to stripe (yellow) rust are the most important traits for successful adoption of winter wheat varieties in Central and West Asia. This study was conducted to determine the stripe rust response and agronomic performance of a set of breeding lines recently developed by the International Winter Wheat Improvement Program (IWWIP). Replicated field studies were conducted in 2010 and 2011 using 38 experimental lines, one regional check (Konya) and one local check. Stripe rust scores were recorded at Karshi, Uzbekistan, and Karaj and Mashhad, Iran, in 2010. Grain yield was recorded at two sites each in Uzbekistan (Karshi and Kibray) and Iran (Karaj and Mashhad) and one site in Turkey (Eskisehir). The test lines showed variation for stripe rust severity, grain yield, 1,000-kernel weight, days to heading and plant height. Several stripe rust resistant genotypes were either higher yielding or equal to the local checks at different sites. Based on stripe rust resistance and yield performance in 2010, a set of 16 genotypes was selected and evaluated in 2011. All 16 were resistant at Almaty, Kazakhstan, and Dushanbe, Tajikistan, in 2011, whereas 9 of the 16 were resistant at Terter, Azerbaijan. The genotypes 'TCI-02-138, 'Solh', 'CMSS97M00541S', 'TCI -2-88(A)' and 'TCI-02-88(C)' were consistently resistant to stripe across all sites in both years. Several lines showed high grain yields and superior agronomic performance across four sites in Uzbekistan and one site in Tajikistan. One genotype has been released in Uzbekistan and another in Tajikistan. © 2012 Springer Science+Business Media B.V.

Ziyaev Z.M.,Uzbek Research Institute of Plant Industry | Sharma R.C.,ICARDA Central Asia and the Caucasus Regional Program | Nazari K.,Biodiversity and Integrated Gene Management Program | Morgounov A.I.,CIMMYT | And 4 more authors.
Euphytica | Year: 2011

Wheat is the most important cereal in Central Asia (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan) and the Caucasus (Armenia, Azerbaijan and Georgia). Stripe rust, caused by Puccinia striiformis f. sp. tritici is considered the most important disease of wheat in Central Asia and the Caucasus (CAC). Although stripe rust has been present in the region for a long time, it has become a serious constraint to wheat production in the past 10 years. This is reflected by the occurrence of five epidemics of stripe rust in the CAC region since 1999, the most recent in 2010. Several wheat varieties occupying substantial areas are either susceptible to stripe rust or possess a low level of resistance. Information on the stripe rust pathogen in terms of prevalent races and epidemiology is not readily available. Furthermore, there is an insufficient understanding of effective stripe rust resistance genes in the region, and little is known about the resistance genes present in the commercial varieties and advanced breeding lines. The deployment of resistant varieties is further complicated by putative changes in virulence in the pathogen population in different parts of the CAC. Twenty four out of 49 improved wheat lines received through international nurseries or other exchange programs showed high levels of resistance to stripe rust to local pathogen populations in 2009. Fifteen of the 24 stripe rust resistant lines also possessed resistance to powdery mildew. It is anticipated that this germplasm will play an important role in developing stripe rust resistant wheat varieties either through direct adoption or using them as parents in breeding programs. © 2010 Springer Science+Business Media B.V.

Hazratkulova S.,Kashkadarya Research Institute of Grain Breeding and Seed Production | Sharma R.C.,ICARDA | Alikulov S.,Uzbek Research Institute of Plant Industry | Islomov S.,Kashkadarya Research Institute of Grain Breeding and Seed Production | And 5 more authors.
Plant Breeding | Year: 2012

Normalized difference vegetation index (NDVI), which is a measure of leaf greenness (chlorophyll content), is considered to be correlated with crop productivity. This study was conducted to examine genotypic variations for NDVI at different growth stages and its relationship to yield in winter wheat under terminal heat stress. Thirty winter wheat genotypes were evaluated at two locations in 2009-2010 and 2010-2011 in Uzbekistan. The NDVI was recorded at booting, heading, milk and dough stages. The wheat genotypes differed significantly for NDVI at each stage. Grain yield ranged from 3.9 to 6.1 t/ha. Wheat genotypes differed in per cent decline in NDVI from booting to dough stage. However, several high-yielding genotypes maintained higher NDVI than low-yielding genotypes when heat stress was evident. The findings suggest change in NDVI during heat stress could be a measure of tolerance. The positive correlation of NDVI with grain yield suggests that it could be used as an indirect selection criterion for identifying physiologically superior, high-yielding wheat lines under terminal heat stress. © 2012 Blackwell Verlag GmbH.

Khazratkulova S.,Kashkadarya Research Institute of Grain Breeding and Seed Production | Sharma R.C.,ICARDA | Amanov A.,Uzbek Research Institute of Plant Industry | Ziyadullaev Z.,Kashkadarya Research Institute of Grain Breeding and Seed Production | And 4 more authors.
Turkish Journal of Agriculture and Forestry | Year: 2015

High grain yield and improved quality determine the commercial success of winter wheat (Triticum aestivum L.) varieties in Central Asia. This study was conducted to determine the effect of environment on grain yield, 1000-kernel weight (TKW), test weight (TWT), protein, and gluten content, and to identify superior wheat genotypes for yield and quality. Thirty winter wheat genotypes were evaluated in 3 years (2010-2012) over multiple locations. A genotype and genotype × environment interaction biplot analysis was used to determine the superior genotypes. There were significant effects of environment and genotype × environment interaction on yield and quality traits. The 30 wheat genotypes showed variations for grain yield (3.7-5.6 t ha-1), TKW (33.6-42.4 g), TWT (753-797 g/L), protein (13.3%-14.8%), and gluten (27.2%-29.5%) content. There was a significant positive correlation between grain yield and TKW in three out of seven environments. There was no correlation of grain yield with TWT, protein, and gluten content with one exception. There were different sets of five most superior genotypes for individual traits. However, certain genotypes were superior based on grain yield and quality traits. Gozgon, Elomon, ID800994.W/Vee//Lagos-12, Jaikhun, and Kroshka were the five most superior genotypes for four quality traits. Elomon, Gozgon, Jaikhun, ID800994.W/Vee//Lagos-12, and Kiriya were the five most superior genotypes based on grain yield, TKW, TWT, protein, and gluten content. This study demonstrates success in wheat breeding for combined high yield and improved quality in winter wheat. This study provides information on the combined stability of high yield and improved quality of the internationally important winter wheat genotypes. Therefore, the results of this study could be valuable for national and international winter wheat breeding programs to develop new varieties with high stable grain yield and quality. © TÜBİTAK.

Discover hidden collaborations