Entity

Time filter

Source Type

Logan, UT, United States

Utah State University is a public research university in Logan, Utah. Founded in 1888 as Utah's agricultural college, USU focused on agriculture, domestic arts, and mechanic arts. The university now offers programs in liberal arts, engineering, business, economics, natural resource science, as well as nationally ranked elementary & secondary education programs. The university has eight colleges and offers a total of 176 bachelor's degrees, 97 master's degrees, and 38 doctoral degrees. It is a land-grant and space-grant institution accredited by the Northwest Commission on Colleges and Universities.USU's main campus is located in Logan with regional campuses in Brigham City, Tooele, and the Uintah Basin. In 2010, the College of Eastern Utah, located in Price, Utah joined the USU system becoming Utah State University College of Eastern Utah . Throughout Utah, USU operates more than 20 distance education centers. Regional campuses, USU Eastern, and distance education centers provide degrees to more than 40% of the students enrolled. In total, USU has more than 180,000 alumni in all 50 states and more than 100 countries.With more than 16,000 students living on or near campus, USU is the largest public residential campus in Utah.USU's athletic teams compete in Division I of the NCAA and are collectively known as the Utah State Aggies. They are members of the Mountain West Conference. Wikipedia.


Scheiner S.,Utah State University
Accounts of Chemical Research | Year: 2013

Among a wide range of noncovalent interactions, hydrogen (H) bonds are well known for their specific roles in various chemical and biological phenomena. When describing conventional hydrogen bonding, researchers use the notation AH···D (where A refers to the electron acceptor and D to the donor). However, the AH molecule engaged in a AH···D H-bond can also be pivoted around by roughly 180, resulting in a HA···D arrangement. Even without the H atom in a bridging position, this arrangement can be attractive, as explained in this Account. The electron density donated by D transfers into a AH σ* antibonding orbital in either case: the lobe of the σ* orbital near the H atom in the H-bonding AH···D geometry, or the lobe proximate to the A atom in the HA···D case. A favorable electrostatic interaction energy between the two molecules supplements this charge transfer. When A belongs to the pnictide family of elements, which include phosphorus, arsenic, antimony, and bismuth, this type of interaction is called a pnicogen bond. This bonding interaction is somewhat analogous to the chalcogen and halogen bonds that arise when A is an element in group 16 or 17, respectively, of the periodic table.Electronegative substitutions, such as a F for a H atom opposite the electron donor atom, strengthen the pnicogen bond. For example, the binding energy in FH2P···NH3 greatly exceeds that of the paradigmatic H-bonding water dimer. Surprisingly, di- or tri-halogenation does not produce any additional stabilization, in marked contrast to H-bonds. Chalcogen and halogen bonds show similar strength to the pnicogen bond for a given electron-withdrawing substituent. This insensitivity to the electron-acceptor atom distinguishes these interactions from H-bonds, in which energy depends strongly upon the identity of the proton-donor atom.As with H-bonds, pnicogen bonds can extract electron density from the lone pairs of atoms on the partner molecule, such as N, O, and S. The π systems of carbon chains can donate electron density in pnicogen bonds. Indeed, the strength of A···π pnicogen bonds exceeds that of H-bonds even when using strong proton donors such as water with the same π system.H-bonds typically have a high propensity for a linear AH···D arrangement, but pnicogen bonds show an even greater degree of anisotropy. Distortions of pnicogen bonds away from their preferred geometry cause a more rapid loss of stability than in H-bonds. Although often observed in dimers in the gas phase, pnicogen bonds also serve as the glue in larger aggregates, and researchers have found them in a number of diffraction studies of crystals. © 2012 American Chemical Society. Source


Patent
Utah State University | Date: 2015-06-02

An apparatus includes a voltage regulation module that controls output voltage of a bidirectional DC to DC converter to an output voltage reference over an output current range between a positive power reference and a negative power reference. A positive power regulation module controls output power of the converter to the positive power reference over a positive constant power range between the output voltage reference and a positive output current reference. A negative power regulation module controls output power of the converter to the negative power reference over a constant power range between the output voltage reference and a maximum negative power limit, and a constant current module limits output current to a positive output current reference in a range between a minimum output voltage and output power of the converter reaching the positive power reference.


Patent
Utah State University | Date: 2015-06-30

For low complexity error correction, a decoder modifies each reliability metric of an input data stream with a random perturbation value. The reliability metric comprises a weighted sum of a channel measurement for the input data stream and parity check results for the input data stream. In addition, the decoder may generate an output data stream as a function of the reliability metrics.


Patent
Utah State University | Date: 2015-07-17

Devices, methods, and systems for providing a restartable ignition system for a hybrid rocket system. In one embodiment, an ignition device includes a housing and at least two electrodes. The housing includes a first side and a second side and defines a bore with an axis extending therethrough between the first and second sides, the bore defining an internal surface of the housing. The at least two electrodes extend through the housing to the internal surface. The at least two electrodes are configured to be spaced apart so as to provide an electrical potential field along the internal surface between the at least two electrodes. Such housing is formed with and includes multiple flat layers such that the multiple flat layers provide ridges along the internal surface. With this arrangement, the internal surface with the ridges are configured to concentrate an electrical charge upon being subjected to the electrical potential field.


Patent
Utah State University | Date: 2015-02-03

Methods for producing biliverdin in a microorganism, methods for producing biliverdin from a non-animal source, cells for producing biliverdin and methods for producing cells for producing biliverdin are disclosed.

Discover hidden collaborations