Time filter

Source Type

Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2015-ETN | Award Amount: 2.54M | Year: 2016

Soft chemical-ionization mass-spectrometry (SCIMS) is an exquisitely sensitive analytical technique with applications to health, the environment and security that are vital to the EU. However, the recent, rapid and widespread adoption of this technique has caught Europe unprepared. The resultant shortage in analytical chemical expertise has created an urgent need for highly skilled young researchers to be trained in the wide variety of SCIMS methods. IMPACT addresses this skills shortage by establishing an intersectoral and multidisciplinary SCIMS training network. IMPACT also brings cohesion to the fragmented SCIMS research and development activities within the EU. To date, most SCIMS developments have been driven not by users but by manufacturers, whose main focus has been on increased sensitivity. However, just as crucial is improved selectivity. Indeed, many users consider improved selectivity to be the key to taking SCIMS technology to a whole new level. Instead of private and public sectors working independently, we need a fresh, intersectoral approach. IMPACT will achieve this through intersectoral work packages and multidisciplinary research projects. In place of major and costly changes in instrumental design, IMPACTs projects will focus on developing new methods for improved chemical specificity by manipulating ion chemistry. Hence, IMPACTs fresh approach will produce a step change in SCIMS instrumentation to deliver both economic and societal benefit to the EU. Specifically, IMPACT will train 10 ESRs within an integrated partnership of commercial, governmental and academic organisations, with planned secondments, 5 Advanced Training Courses, 7 interactive Complementary Skills Workshops, and 4 ESR Centred Research Meetings. IMPACT will therefore provide Europe with both a world-class capability in SCIMS technology and a cohort of highly trained researchers who will bring the benefits of that technology to citizens across the EU.

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: LCE-16-2014 | Award Amount: 3.40M | Year: 2015

Securing abundant, affordable, and clean energy remains a critical scientific challenge. Fortuitously, large shale formations occur within Europe. As the conventional gas production in Europe peaked in 2004, European shale gas could become a practical necessity for the next 50 years. However, the exploitation of shale gas remains challenging. Further, its environmental footprint is at present poorly quantified. Great care is needed to assess and pursue this energy resource in the safest possible way for the long-term future of Europe whilst protecting the European diverse natural environment. With this in mind, ShaleXenvironmenT assembled a multi-disciplinary academic team, with strong industrial connections. A comprehensive approach is proposed towards ensuring that the future development of shale gas in Europe will safeguard the public with the best environmental data suitable for governmental appraisal, and ultimately for encouraging industrial best practice. The primary objective is to assess the environmental footprint of shale gas exploitation in Europe in terms of water usage and contamination, induced seismicity, and fugitive emissions. Using synergistically experiments and modeling activities, ShaleXenvironmenT will achieve its objective via a fundamental understanding of rock-fluid interactions, fluid transport, and fracture initiation and propagation, via technological innovations obtained in collaboration with industry, and via improvements on characterization tools. ShaleXenvironmenT will maintain a transparent discussion with all stakeholders, including the public, and will suggest ideas for approaches on managing shale gas exploitation, impacts and risks in Europe, and eventually worldwide. The proposed research will bring economical benefits for consultancy companies, service industry, and oil and gas conglomerates. The realization of shale gas potential in Europe is expected to contribute clean energy for, e.g., the renaissance of the manufacturing industry.

Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: NMP.2013.1.1-1 | Award Amount: 9.30M | Year: 2013

The present project is aimed to the development of a multi-step process for the production of second-generation biofuels from lignocellulosic biomass in a cost-efficient way through the use of tailored nanostructured catalysts. The proposed process is based on the cascade combination of three catalytic transformations: catalytic pyrolysis, intermediate deoxygenation and hydrodeoxygenation. The sequential coupling of catalytic steps will be an essential factor for achieving a progressive and controlled biomass deoxygenation, which is expected to lead to liquid biofuels with a chemical composition and properties similar to those of oil-derived fuels. According to this strategy, the best nanocatalytic system in each step will be selected to deal with the remarkable chemical complexity of lignocellulose pyrolysis products, as well as to optimize the bio-oil yield and properties. Since hydrodeoxygenation (HDO) is outlined in this scheme as the ultimate deoxygenation treatment, the overall hydrogen consumption should be strongly minimized, resulting in a significant improvement of the process economic profitability. The use of nanostructured catalysts will be the key tool for obtaining in each chemical step of the cascade process, the optimum deoxygenation degree, as well as high efficiency, in terms both of matter and energy, minimizing at the same time the possible environmental impacts. The project will involve experiments at laboratory, bench and pilot plant scales, as well as a viability study of its possible commercial application. Thereby, the integrated process will be assessed according to technical, economic, social, safety, toxicological and environmental criteria. The consortium will be formed by 17 partners, including 4 research institutions, 6 universities, 5 large industries and 2 SME.

Agency: Cordis | Branch: FP7 | Program: MC-ITN | Phase: FP7-PEOPLE-ITN-2008 | Award Amount: 4.09M | Year: 2009

Velocity map imaging (VMI) has enabled a number of remarkable advances in the field of molecular dynamics over the past few years. Owing to the robustness of VMI, exciting new applications are anticipated. ICONIC will link 15 European partners using and improving VMI in a four year program spanning several areas of experimental physics and chemistry and underpinning technologies in lasers, imaging detectors, high-speed electronics and mass spectrometric methods. We will pursue the following scientific objectives: 1. To develop novel imaging technology for detection of ions and electrons. 2. To apply this new technology in studies of time- and/or quantum- resolved molecular dynamics, with an emphasis on ion-molecule reactions, reactive scattering, and photochemical processes in amino-acids and bio-mimic molecules. 3. To develop novel mass spectrometric imaging applications for use in analytical chemistry by implementing state-of-the-art imaging detection techniques. 4. To integrate imaging techniques with ultrafast pulse-shaping, coincidence detectors, and molecular state preparation methods in order to create mechanisms for quantum control of molecular dynamics. We will provide high quality integrated training for ESRs (540 training months) and ERs (96 training months) which will expose them to a wide range of instrumental methods and applications and set broad horizons for their future career paths. Training of an individual ESR (or ER) will be the responsibility of the local primary supervisor, supported by two secondary supervisors one in the host institution, and a mentor from another node within the Network and the oversight of the network training coordinator (NTC), Prof. M. Ashfold (BRI). Training elements available to all ESRs will include workshops in Bristol on networking, communication and presentation, business, entrepreneurial and IP skills; along with scientific training via graduate schools and inter-lab secondments.

Agency: Cordis | Branch: FP7 | Program: CP | Phase: ENERGY.2010.10.2-1 | Award Amount: 3.59M | Year: 2010

The proposed project comes with a visionary approach, aiming at development of highly efficient molecular-wire charge transfer platform to be used in a novel generation thin film dye-sensitized solar cells fabricated via organic chemistry routes. The proposed technology combines the assembled dye monolayers, linked with organic molecular wires to semiconducting thin film deposited on optically transparent substrates. Current organic photovoltaic (OPV) cell designs made a significant step towards low cost solar cells technology, however in order to be competitive with Si and CIGs technologies, OPVs have to demonstrate long term stability and power conversion efficiencies above 10% The highest reported power conversion efficiency for OPV device based on bulk heterojunction device with PCBM and low band gap conjugated polymers is today 6.4% but this system seems reaching its limit. Offsets in the energetics of these systems lead to large internal energy losses. The dye-sensitized solar cells (DSC) reach the efficiency above 11% but the problems with the stability of the electrolyte are the current bottleneck. The MOLESOL comes with a novel concept of hybrid device combining the advantages of both concepts (i.e. dye coupled with organic molecular wire to a conductive electrode). This concept will lead to stable cells with enhanced conversion efficiency based on: Reduction of critical length for the charge collection generated in the dye monolayer by the inorganic bottom electrode, using short molecular wires compatible with exciton diffusion length. Replacing current inorganic ITO/FTO (n-type) layer by novel transparent wide band p-type semiconductor with a possibility of engineering the surface workfunction and leading to perfect matching between HOMO of the dye layer and the valence band of semiconductors, allowing larger Voc.

Discover hidden collaborations