Us Forest Service Pacific Northwest Research Station

Corvallis, OR, United States

Us Forest Service Pacific Northwest Research Station

Corvallis, OR, United States
Time filter
Source Type

Arismendi I.,Oregon State University | Safeeq M.,Oregon State University | Johnson S.L.,Us Forest Service Pacific Northwest Research Station | Dunham J.B.,U.S. Geological Survey | Haggerty R.,Oregon State University
Hydrobiologia | Year: 2013

Flow and temperature are strongly linked environmental factors driving ecosystem processes in streams. Stream temperature maxima (Tmax_w) and stream flow minima (Qmin) can create periods of stress for aquatic organisms. In mountainous areas, such as western North America, recent shifts toward an earlier spring peak flow and decreases in low flow during summer/fall have been reported. We hypothesized that an earlier peak flow could be shifting the timing of low flow and leading to a decrease in the interval between Tmax_w and Qmin. We also examined if years with extreme low Qmin were associated with years of extreme high Tmax_w. We tested these hypotheses using long-term data from 22 minimally human-influenced streams for the period 1950-2010. We found trends toward a shorter time lag between Tmax_w and Qmin over time and a strong negative association between their magnitudes. Our findings show that aquatic biota may be increasingly experiencing narrower time windows to recover or adapt between these extreme events of low flow and high temperature. This study highlights the importance of evaluating multiple environmental drivers to better gage the effects of the recent climate variability in freshwaters. © 2012 Springer Science+Business Media Dordrecht.

Arismendi I.,Oregon State University | Safeeq M.,Oregon State University | Dunham J.B.,U.S. Geological Survey | Johnson S.L.,Us Forest Service Pacific Northwest Research Station
Environmental Research Letters | Year: 2014

Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11-44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature-stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time. © 2014 IOP Publishing Ltd.

Albright W.L.,University of Washington | Peterson D.L.,Us Forest Service Pacific Northwest Research Station
Journal of Biogeography | Year: 2013

Aim: Climate change in the 21st century will affect tree growth in the Pacific Northwest region of North America, although complex climate-growth relationships make it difficult to identify how radial growth will respond across different species distributions. We used a novel method to examine potential growth responses to climate change at a broad geographical scale with a focus on visual inspection of patterns and applications beyond sampled areas. Location: Washington and Oregon, USA. Methods: We examined projected changes in climate within species distributions of mountain hemlock (Tsuga mertensiana), subalpine fir (Abies lasiocarpa), Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa) in Washington and Oregon based on three different future climate scenarios. By drawing on knowledge from previous climate-growth studies and organizing information into climate space plots, we inferred directional changes in future radial growth. Results: Increased moisture stress will reduce growth throughout the distribution of Douglas-fir, but growth may increase at some energy-limited locations. Decreased snowpack will increase growing season length and increase growth of subalpine fir and mountain hemlock at most locations, although growth may decrease at some low-elevation sites. Main conclusions: An altered Pacific Northwest climate will elicit different growth responses from common conifer species within their current distributions. The methodology developed in this study allowed us to qualitatively extrapolate climate-growth relationships from individual sites to entire species distributions and can identify growth responses where climate-growth data are limited. © 2013 John Wiley & Sons Ltd.

Evers L.B.,Bureau of Land Management | Miller R.F.,Oregon State University | Doescher P.S.,Oregon State University | Hemstrom M.,Us Forest Service Pacific Northwest Research Station | Neilson R.P.,Us Forest Service Pacific Northwest Research Station
Rangeland Ecology and Management | Year: 2013

Disturbances and their interactions play major roles in sagebrush (Artemisia spp. L.) community dynamics. Although impacts of some disturbances, most notably fire, have been quantified at the landscape level, some have been ignored and rarely are interactions between disturbances evaluated. We developed conceptual state-and-transition models for each of two broad sagebrush groups-a warm-dry group characterized by Wyoming big sagebrush (Artemisia tridentata Nutt. subsp. wyomingensis Beetle & Young) communities and a cool-moist group characterized by mountain big sagebrush (Artemisia tridentata Nutt. subsp. vaseyana Rydb. Beetle) communities. We used the Vegetation Dynamics Development Tool to explore how the abundance of community phases and states in each conceptual model might be affected by fire, insect outbreak, drought, snow mold, voles, sudden drops in winter temperatures (freeze-kill), livestock grazing, juniper (Juniperus occidentalis var. occidentalis Hook.) expansion, nonnative annual grasses such as cheatgrass (Bromus tectorum L.), and vegetation treatments. Changes in fuel continuity and loading resulted in average fire rotations of 12 yr in the warm-dry sagebrush group and 81 yr in the cool-moist sagebrush group. Model results in the warm-dry sagebrush group indicated postfire seeding success alone was not sufficient to limit the area of cheatgrass domination. The frequency of episodes of very high utilization by domestic livestock during severe drought was a key influence on community phase abundance in our models. In the cool-moist sagebrush group, model results indicated at least 10% of the juniper expansion area should be treated annually to keep juniper in check. Regardless, juniper seedlings and saplings would remain abundant. © 2013 The Society for Range Management.

Wright C.S.,Us Forest Service Pacific Northwest Research Station
Rangeland Ecology and Management | Year: 2013

Fuel consumption predictions are necessary to accurately estimate or model fire effects, including pollutant emissions during wildland fires. Fuel and environmental measurements on a series of operational prescribed fires were used to develop empirical models for predicting fuel consumption in big sagebrush (Artemisia tridentata Nutt.) ecosystems. Models are proposed for predicting fuel consumption during prescribed fires in the fall and the spring. Total prefire fuel loading ranged from 5.3-23.6 Mg·ha-1; between 32% and 92% of the total loading was composed of live and dead big sagebrush. Fuel consumption ranged from 0.8-22.3 Mg·ha-1, which equates to 11-99% of prefire loading (mean=59%). Model predictors include prefire shrub loading, proportion of area burned, and season of burn for shrub fuels (R 2=0.91). Models for predicting proportion of area burned for spring and fall fires were also developed (R2=0.64 and 0.77 for spring and fall fire models, respectively). Proportion of area burned, an indicator of the patchiness of the fire, was best predicted from the coverage of the herbaceous vegetation layer, wind speed, and slope; for spring fires, day-of-burn 10-h woody fuel moisture content was also an important predictor variable. Models predicted independent shrub consumption measurements within 8.1% (fall) and 12.6% (spring) for sagebrush fires. © 2013 The Society for Range Management.

Arismendi I.,Oregon State University | Johnson S.L.,Us Forest Service Pacific Northwest Research Station | Dunham J.B.,U.S. Geological Survey | Haggerty R.,Oregon State University | Hockman-Wert D.,U.S. Geological Survey
Geophysical Research Letters | Year: 2012

Temperature is a fundamentally important driver of ecosystem processes in streams. Recent warming of terrestrial climates around the globe has motivated concern about consequent increases in stream temperature. More specifically, observed trends of increasing air temperature and declining stream flow are widely believed to result in corresponding increases in stream temperature. Here, we examined the evidence for this using long-term stream temperature data from minimally and highly human-impacted sites located across the Pacific continental United States. Based on hypothesized climate impacts, we predicted that we should find warming trends in the maximum, mean and minimum temperatures, as well as increasing variability over time. These predictions were not fully realized. Warming trends were most prevalent in a small subset of locations with longer time series beginning in the 1950s. More recent series of observations (1987-2009) exhibited fewer warming trends and more cooling trends in both minimally and highly human-influenced systems. Trends in variability were much less evident, regardless of the length of time series. Based on these findings, we conclude that our perspective of climate impacts on stream temperatures is clouded considerably by a lack of long-term data on minimally impacted streams, and biased spatio-temporal representation of existing time series. Overall our results highlight the need to develop more mechanistic, process-based understanding of linkages between climate change, other human impacts and stream temperature, and to deploy sensor networks that will provide better information on trends in stream temperatures in the future. © Copyright 2012 by the American Geophysical Union.

Keane R.E.,U.S. Department of Agriculture | Herynk J.M.,SEM LLC | Toney C.,U S WEST | Urbanski S.P.,U S WEST | And 2 more authors.
Forest Ecology and Management | Year: 2013

Fuel Loading Models (FLMs) and Fuel Characteristic Classification System (FCCSs) fuelbeds are used throughout wildland fire science and management to simplify fuel inputs into fire behavior and effects models, but they have yet to be thoroughly evaluated with field data. In this study, we used a large dataset of Forest Inventory and Analysis (FIA) surface fuel estimates (n=13,138) to create a new fuel classification called Fuel Type Groups (FTGs) from FIA forest type groups, and then keyed an FLM, FCCS, and FTG class to each FIA plot based on fuel loadings and stand conditions. We then compared FIA sampled loadings to the keyed class loading values for four surface fuel components (duff, litter, fine woody debris, coarse woody debris) and to mapped FLM, FCCS, and FTG class loading values from spatial fuel products. We found poor performances (R2<0.30) for most fuel component loadings in all three classifications that, in turn, contributed to poor mapping accuracies. The main reason for the poor performances is the high variability of the four fuel component loadings within classification categories and the inherent scale of this variability does not seem to match the FIA measurement scale or LANDFIRE mapping scale. © 2013 Elsevier B.V.

May C.,James Madison University | Roering J.,University of Oregon | Eaton L.S.,James Madison University | Burnett K.M.,Us Forest Service Pacific Northwest Research Station
Geology | Year: 2013

A fundamental yet unresolved question in fluvial geomorphology is what controls the width of valleys in mountainous terrain. Establishing a predictive relation for valley floor width is critical for realizing links between aquatic ecology and geomorphology because the most productive riverine habitats often occur in low-gradient streams with broad floodplains. Working in the Oregon Coast Range (western United States), we used airborne lidar to explore controls on valley width, and couple these findings with models of salmon habitat potential. We defined how valley floor width varies with drainage area in a catchment that exhibits relatively uniform ridge-and-valley topography sculpted by shallow landslides and debris flows. In drainage areas >0.1 km2, valley width increases as a power law function of drainage area with an exponent of ~0.6. Consequently, valley width increases more rapidly downstream than channel width (exponent of ~0.4), as derived by local hydraulic geometry. We used this baseline valley width-drainage area function to determine how ancient deep-seated landslides in a nearby catchment influence valley width. Anomalously wide valleys tend to occur upstream of, and adjacent to, large landslides, while downstream valley segments are narrower than predicted from our baseline relation. According to coho salmon habitat-potential models, broad valley segments associated with deep-seated landsliding resulted in a greater proportion of the channel network hosting productive habitat. Because large landslides in this area are structurally controlled, our findings indicate a strong link between geologic properties and aquatic habitat. © 2013 Geological Society of America.

Arismendi I.,Oregon State University | Johnson S.L.,Us Forest Service Pacific Northwest Research Station | Dunham J.B.,U.S. Geological Survey | Haggerty R.,Oregon State University
Freshwater Biology | Year: 2013

Temperature is a major driver of ecological processes in stream ecosystems, yet the dynamics of thermal regimes remain poorly described. Most work has focused on relatively simple descriptors that fail to capture the full range of conditions that characterise thermal regimes of streams across seasons or throughout the year. To more completely describe thermal regimes, we developed several descriptors of magnitude, variability, frequency, duration and timing of thermal events throughout a year. We evaluated how these descriptors change over time using long-term (1979-2009), continuous temperature data from five relatively undisturbed cold-water streams in western Oregon, U.S.A. In addition to trends for each descriptor, we evaluated similarities among them, as well as patterns of spatial coherence, and temporal synchrony. Using different groups of descriptors, we were able to more fully capture distinct aspects of the full range of variability in thermal regimes across space and time. A subset of descriptors showed both higher coherence and synchrony and, thus, an appropriate level of responsiveness to examine evidence of regional climatic influences on thermal regimes. Most notably, daily minimum values during winter-spring were the most responsive descriptors to potential climatic influences. Overall, thermal regimes in streams we studied showed high frequency and low variability of cold temperatures during the cold-water period in winter and spring, and high frequency and high variability of warm temperatures during the warm-water period in summer and autumn. The cold and warm periods differed in the distribution of events with a higher frequency and longer duration of warm events in summer than cold events in winter. The cold period exhibited lower variability in the duration of events, but showed more variability in timing. In conclusion, our results highlight the importance of a year-round perspective in identifying the most responsive characteristics or descriptors of thermal regimes in streams. The descriptors we provide herein can be applied across hydro-ecological regions to evaluate spatial and temporal patterns in thermal regimes. Evaluation of coherence and synchrony of different components of thermal regimes can facilitate identification of impacts of regional climate variability or local human or natural influences. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

Cushman S.A.,Rocky Research | Raphael M.G.,Us Forest Service Pacific Northwest Research Station | Ruggiero L.F.,Rocky Research | Shirk A.S.,University of Washington | And 2 more authors.
Landscape Ecology | Year: 2011

In mobile animals, movement behavior can maximize fitness by optimizing access to critical resources and minimizing risk of predation. We sought to evaluate several hypotheses regarding the effects of landscape structure on American marten foraging path selection in a landscape experiencing forest perforation by patchcut logging. We hypothesized that in the uncut pre-treatment landscape marten would choose foraging paths to maximize access to cover types that support the highest density of prey. In contrast, in the post-treatment landscapes we hypothesized marten would choose paths primarily to avoid crossing openings, and that this would limit their ability to optimally select paths to maximize foraging success. Our limiting factor analysis shows that different resistant models may be supported under changing landscape conditions due to threshold effects, even when a species' response to landscape variables is constant. Our results support previous work showing forest harvest strongly affects marten movement behavior. The most important result of our study, however, is that the influence of these features changes dramatically depending on the degree to which timber harvest limits available movement paths. Marten choose foraging paths in uncut landscapes to maximize time spent in cover types providing the highest density of prey species. In contrast, following landscape perforation by patchcuts, marten strongly select paths to avoid crossing unforested areas. This strong response to patch cutting reduces their ability to optimize foraging paths to vegetation type. Marten likely avoid non-forested areas in fragmented landscapes to reduce risk of predation and to benefit thermoregulation in winter, but in doing so they may suffer a secondary cost of decreased foraging efficiency. © 2011 Springer Science+Business Media B.V. (outside the USA).

Loading Us Forest Service Pacific Northwest Research Station collaborators
Loading Us Forest Service Pacific Northwest Research Station collaborators