Entity

Time filter

Source Type

London, United Kingdom

Crawford C.,Urinary System Physiology Unit
Acta physiologica (Oxford, England) | Year: 2011

We hypothesized that extracellular nucleotides, established as being released from renal tubular epithelial cells, act at pericytes to regulate vasa recta capillary diameter. A rat live kidney slice model and video imaging techniques were used to investigate the effects of extracellular nucleotides on in situ (subsurface) vasa recta diameter at pericyte and non-pericyte sites. In addition, RT-qPCR was used to quantify P2 receptor mRNA expression in isolated vasa recta. Extracellular ATP, UTP, benzylbenzyl ATP (BzATP) or 2-methylthioATP (2meSATP) evoked a significantly greater vasoconstriction of subsurface vasa recta at pericytes than at non-pericyte sites. The rank order of agonist potency was BzATP = 2meSATP > ATP = UTP. The vasoconstriction evoked at pericyte sites by ATP was significantly attenuated by the P2 receptor antagonists suramin, pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) (PPADS) or Reactive Blue-2 (RB-2). UTP-evoked vasoconstriction at pericytes was attenuated by suramin or RB-2 but not PPADS. Interestingly, suramin or PPADS, when applied in the absence of a P2 receptor agonist, evoked a weak but significant vasoconstriction of vasa recta at pericyte sites, suggesting tonic vasodilation by nucleotides. Significant levels of P2X(1, 3 and 7) and P2Y(4 and 6) receptor mRNA were detected in vasa recta. Extracellular nucleotides act at pericytes to cause vasoconstriction of in situ vasa recta. Pharmacological characterization, supported by RT-qPCR data, suggests that P2X(1 and 7) and P2Y(4) receptors mediate nucleotide-evoked vasoconstriction of vasa recta by pericytes. We propose that nucleotides released from renal tubular epithelial cells, in close proximity to vasa recta capillaries, are key in regulating renal medullary blood flow. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society. Source


Crawford C.,Universities of Kent and Greenwich at Medway | Kennedy-Lydon T.,Urinary System Physiology Unit | Sprott C.,Urinary System Physiology Unit | Desai T.,Urinary System Physiology Unit | And 5 more authors.
Nephron - Physiology | Year: 2012

Background: Medullary blood flow is via vasa recta capillaries, which possess contractile pericytes. In vitro studies using isolated descending vasa recta show that pericytes can constrict/dilate descending vasa recta when vasoactive substances are present. We describe a live kidney slice model in which pericyte-mediated vasa recta constriction/dilation can be visualized in situ. Methods: Confocal microscopy was used to image calcein, propidium iodide and Hoechst labelling in 'live' kidney slices, to determine tubular and vascular cell viability and morphology. DIC video-imaging of live kidney slices was employed to investigate pericyte-mediated real-time changes in vasa recta diameter. Results: Pericytes were identified on vasa recta and their morphology and density were characterized in the medulla. Pericyte-mediated changes in vasa recta diameter (10-30%) were evoked in response to bath application of vasoactive agents (norepinephrine, endothelin-1, angiotensin-II and prostaglandin E2) or by manipulating endogenous vasoactive signalling pathways (using tyramine, L-NAME, a cyclo-oxygenase (COX-1) inhibitor indomethacin, and ATP release). Conclusions: The live kidney slice model is a valid complementary technique for investigating vasa recta function in situ and the role of pericytes as regulators of vasa recta diameter. This technique may also be useful in exploring the role of tubulovascular crosstalk in regulation of medullary blood flow. Copyright © 2012 S. Karger AG, Basel. Source


Kennedy-Lydon T.M.,Urinary System Physiology Unit | Crawford C.,Universities of Kent and Greenwich at Medway | Wildman S.S.P.,Universities of Kent and Greenwich at Medway | Peppiatt-Wildman C.M.,Universities of Kent and Greenwich at Medway
Acta Physiologica | Year: 2013

Regulation of medullary blood flow (MBF) is essential in maintaining normal kidney function. Blood flow to the medulla is supplied by the descending vasa recta (DVR), which arise from the efferent arterioles of juxtamedullary glomeruli. DVR are composed of a continuous endothelium, intercalated with smooth muscle-like cells called pericytes. Pericytes have been shown to alter the diameter of isolated and in situ DVR in response to vasoactive stimuli that are transmitted via a network of autocrine and paracrine signalling pathways. Vasoactive stimuli can be released by neighbouring tubular epithelial, endothelial, red blood cells and neuronal cells in response to changes in NaCl transport and oxygen tension. The experimentally described sensitivity of pericytes to these stimuli strongly suggests their leading role in the phenomenon of MBF autoregulation. Because the debate on autoregulation of MBF fervently continues, we discuss the evidence favouring a physiological role for pericytes in the regulation of MBF and describe their potential role in tubulo-vascular cross-talk in this region of the kidney. Our review also considers current methods used to explore pericyte activity and function in the renal medulla. © 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society. Source


Hall A.M.,University College London | Crawford C.,Urinary System Physiology Unit | Unwin R.J.,University College London | Duchen M.R.,University College London | Peppiatt-Wildman C.M.,Urinary System Physiology Unit
Journal of the American Society of Nephrology | Year: 2011

Translating discoveries made in isolated renal cells and tubules to the in vivo situation requires the assessment of cellular function in intact live organs. Multiphoton imaging is a form of fluorescence microscopy that is ideally suited to working with whole tissues and organs, but adequately loading cells with fluorescence dyes in vivo remains a challenge. We found that recirculation of fluorescence dyes in the rat isolated perfused kidney (IPK) resulted in levels of intracellular loading that would be difficult to achieve in vivo. This technique allowed the imaging of tubular cell structure and function with multiphoton microscopy in an intact, functioning organ. We used this approach to follow processes in real time, including (1) relative rates of reactive oxygen species (ROS) production in different tubule types, (2) filtration and tubular uptake of low-molecular-weight dextrans and proteins, and (3) the effects of ischemia-reperfusion injury on mitochondrial function and cell structure. This study demonstrates that multiphoton microscopy of the isolated perfused kidney is a powerful technique for detailed imaging of cell structure and function in an intact organ. Copyright © 2011 by the American Society of Nephrology. Source

Discover hidden collaborations