Entity

Time filter

Source Type

Cork, Ireland

This paper distinguishes human and climate influences on the Columbia River streamflow disturbance regime, examines how this disturbance regime has changed over the last 150 years, and discusses downstream impacts. Flow management and withdrawal have greatly curtailed exceedence of the natural bankfull level of ~20 000 m 3 s -1. The frequency distribution of Columbia River flow has also changed. Sediment transport is positively correlated with streamflow standard deviation, and has been greatly reduced by flow regulation. Three kinds of spring freshet style have been identified; there are also three kinds of winter freshet. Flow regulation and regional climate warming have changed freshet styles and reduced maximum flows during the spring season. Downstream effects of hydrological alterations include increased salinity intrusion length, loss of shallow water habitat area during the freshet season, increased tides throughout most of the year, and a decrease in area of the Columbia River plume during spring and summer. Although climate changes and variations have played a substantial role in changing the hydrological disturbance regime, their influence is still less than that of human manipulation of the flow cycle. © 2011 IAHS Press.


Wang P.,Harbin Institute of Technology | Ma J.,Harbin Institute of Technology | Ma J.,Urban Water Engineering | Wang Z.,Harbin Institute of Technology | And 2 more authors.
Langmuir | Year: 2012

A novel hydrophilic nanocomposite additive (PVP-g-MMT), coupling of hydrophilic modifier, self-dispersant, and pore-forming agent (porogen), was synthesized by the surface modification of montmorillonite (MMT) with N-vinylpyrrolidone (NVP) via "grafting from" polymerization in the presence of H 2O 2-NH 3•H 2O as the initiator, and then the nanocomposite membrane of poly(vinylidene fluoride) (PVDF) and PVP-g-MMT was fabricated by wet phase inversion onto clean glass plates. The existence and dispersion of PVP-g-MMT had a great role on structures, morphologies, surface composition, and chemistry of the as-prepared nanocomposite membranes confirmed by varieties of spectroscopic and microscopic characterization techniques, all of which were the correlated functions of PVP-g-MMT content in casting solution. By using the dead-end filtration of protein aqueous solution, the performance of the membrane was evaluated. It was seen that all of the nanocomposite membranes showed obvious improvement of water flux and proper BSA rejection ratio, compared to the control PVDF membrane. Meanwhile, dynamic BSA fouling resistance and flux recovery properties were also greatly enhanced due to the changes of surface hydrophilicity and morphologies. All the experimental results indicated that the as-prepared PVDF nanocomposite membranes showed better separation performances than the control PVDF membrane. Hopefully, the demonstrated method of hydrophilic nanocomposite additive synthesis would be applied for commonly hydroxyl group-containing inorganic nanoparticles, which was favorable to fabricate hydrophilic nanoparticle- enhanced polymer membranes for water treatment. © 2012 American Chemical Society.


Besmer M.D.,Eawag - Swiss Federal Institute of Aquatic Science and Technology | Besmer M.D.,ETH Zurich | Weissbrodt D.G.,Eawag - Swiss Federal Institute of Aquatic Science and Technology | Weissbrodt D.G.,Urban Water Engineering | And 4 more authors.
Frontiers in Microbiology | Year: 2014

Fluorescent staining coupled with flow cytometry (FCM) is often used for the monitoring, quantification and characterization of bacteria in engineered and environmental aquatic ecosystems including seawater, freshwater, drinking water, wastewater, and industrial bioreactors. However, infrequent grab sampling hampers accurate characterization and subsequent understanding of microbial dynamics in all of these ecosystems. A logic technological progression is high throughput and full automation of the sampling, staining, measurement, and data analysis steps. Here we assess the feasibility and applicability of automated FCM by means of actual data sets produced with prototype instrumentation. As proof-of-concept we demonstrate examples of microbial dynamics in (i) flowing tap water from a municipal drinking water supply network and (ii) river water from a small creek subject to two rainfall events. In both cases, automated measurements were done at 15-min intervals during 12-14 consecutive days, yielding more than 1000 individual data points for each ecosystem. The extensive data sets derived from the automated measurements allowed for the establishment of baseline data for each ecosystem, as well as for the recognition of daily variations and specific events that would most likely be missed (or miss-characterized) by infrequent sampling. In addition, the online FCM data from the river water was combined and correlated with online measurements of abiotic parameters, showing considerable potential for a better understanding of cause-and-effect relationships in aquatic ecosystems. Although several challenges remain, the successful operation of an automated online FCM system and the basic interpretation of the resulting data sets represent a breakthrough toward the eventual establishment of fully automated online microbiological monitoring technologies. © 2014 Besmer, Weissbrodt, Kratochvil, Sigrist, Weyland and Hammes.


Hu Y.,University College Dublin | Hu Y.,Urban Water Engineering | Zhao Y.,University College Dublin | Rymszewicz A.,University College Dublin
Science of the Total Environment | Year: 2014

Achieving effective total nitrogen (TN) removal is one of the major challenges faced by constructed wetlands (CWs). To address this issue, multiple "tides" were proposed in a single stage tidal flow constructed wetland (TFCW). With this adoption, exceptional TN removal (85% on average) was achieved under a high nitrogen loading rate (NLR) of around 28gNm-2day-1, which makes the proposed system an adequate option to provide advanced wastewater treatment for peri-urban communities and rural area. It was revealed that the multiple "tides" not only promoted TN removal performance, but also brought more flexibility to TFCWs. Adsorption of NH4 +-N onto the wetland medium (during contact period) and regeneration of the adsorption capacity via nitrification (during bed resting) were validated as the key processes for NH4 +-N conversion in TFCWs. Moreover, simultaneous nitrification denitrification (SND) was found to be significant during the bed resting period. These findings will provide a new foundation for the design and modeling of nitrogen conversion and oxygen transfer in TFCWs. © 2013 Elsevier B.V.


Fang J.,Harbin Institute of Technology | Fang J.,Urban Water Engineering | Yang X.,Sun Yat Sen University | Yang X.,Hong Kong University of Science and Technology | And 4 more authors.
Water Research | Year: 2010

The frequent occurrence of algal blooms in drinking water reservoirs causes problems to water supply, one of which is the release of algal organic matter in high concentrations to affect drinking water quality. Algal organic matter, including extracellular organic matter (EOM) and intracellular organic matter (IOM), was characterized. The formation of a variety of disinfection by-products (DBPs) in chlorination and chloramination of EOM, IOM and algal cells was evaluated. Natural organic matter (NOM) isolated from Suwannee River was also studied for comparison. EOM and IOM were rich in organic nitrogen, which consisted of high (over 10 kDa) and low (70-1000 Da) molecular weight (MW) organic matter, whilst the MW of organic carbon in EOM and IOM was relatively lower. IOM had a higher fraction of total organic nitrogen, with larger proportions of higher MW and more hydrophobic contents than did EOM. IOM also contained higher fractions of free amino acids but lower fractions of aliphatic amines than did EOM. During chlorination of EOM and IOM, organic chloramines were first formed and then became undetectable after 1 d. Chlorination of EOM and IOM produced more nitrogenous DBPs (N-DBPs) and haloaldehydes and less carbonaceous DBPs (C-DBPs) than did chlorination of NOM. Organic chloramines were found after 3-d chloramination of EOM and IOM. The amounts of N-DBPs and C-DBPs formed from chloramination of EOM or IOM were much less than that from NOM. EOM produced less DBPs (except for trichloronitromethane) than did IOM and algal cells in chlorination and chloramination. © 2010.

Discover hidden collaborations