Uppsala, Sweden

Uppsala University

www.uu.se
Uppsala, Sweden

Uppsala University is a research university in Uppsala, Sweden, and is the oldest university in Sweden, founded in 1477. It ranks among the best universities in Northern Europe and in international rankings.The university rose to pronounced significance during the rise of Sweden as a great power at the end of the 16th century and was then given a relative financial stability with the large donation of King Gustavus Adolphus in the early 17th century. Uppsala also has an important historical place in Swedish national culture, identity and for the Swedish establishment: in historiography, literature, politics, and music. Many aspects of Swedish academic culture in general, such as the white student cap, originated in Uppsala. It shares some peculiarities, such as the student nation system, with Lund University and the University of Helsinki.Uppsala belongs to the Coimbra Group of European universities. The university has nine faculties distributed over three “disciplinary domains”. It has about 24,000 full-time students and 2,400 doctoral students. It has a teaching staff of roughly 1,800 out of a total of 6,500 employees. Twenty-five per cent of the 674 professors at the university are women. Of its turnover of SEK 5.9 billion in 2013, 30% was spent on education on basic and advanced level, while 66% was spent on research and research programs.Architecturally, Uppsala University has traditionally had a strong presence in the area around the cathedral on the western side of the River Fyris. Despite some more contemporary building developments further away from the centre, Uppsala's historic centre continues to be dominated by the presence of the university. Wikipedia.


Time filter

Source Type

Grant
Agency: European Commission | Branch: H2020 | Program: SGA-RIA | Phase: FETFLAGSHIP | Award Amount: 89.00M | Year: 2016

Understanding the human brain is one of the greatest scientific challenges of our time. Such an understanding can provide profound insights into our humanity, leading to fundamentally new computing technologies, and transforming the diagnosis and treatment of brain disorders. Modern ICT brings this prospect within reach. The HBP Flagship Initiative (HBP) thus proposes a unique strategy that uses ICT to integrate neuroscience data from around the world, to develop a unified multi-level understanding of the brain and diseases, and ultimately to emulate its computational capabilities. The goal is to catalyze a global collaborative effort. During the HBPs first Specific Grant Agreement (SGA1), the HBP Core Project will outline the basis for building and operating a tightly integrated Research Infrastructure, providing HBP researchers and the scientific Community with unique resources and capabilities. Partnering Projects will enable independent research groups to expand the capabilities of the HBP Platforms, in order to use them to address otherwise intractable problems in neuroscience, computing and medicine in the future. In addition, collaborations with other national, European and international initiatives will create synergies, maximizing returns on research investment. SGA1 covers the detailed steps that will be taken to move the HBP closer to achieving its ambitious Flagship Objectives.


Grant
Agency: European Commission | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2016 | Award Amount: 3.75M | Year: 2017

TREATMENT is a Marie Sklodowska Curie Innovative Training Network proposal directly addressing the need for high-level training and career paths in risk evaluation of drug induced metabolic dysfunctions, a relevant aspect, so far unexplored by traditional toxicology studies, but urgently needed to challenge current severe limitations of health care interventions in mental disorders. These patients require life-long medications that subsequently trigger metabolic diseases with a strong negative impact on their health and well-being. To achieve this, and improve adherence to treatments, we will evaluate how short-term antipsychotic drug responses impact long-term metabolic control to identify and validate biomarkers with clinically predictive value for targeting drug induced metabolic dysfunctions. This effort will have added commercial value by enabling the design of predictive marker kits for testing adverse secondary metabolic effects of drugs to be used in pharmacological and medical practice. TREATMENT will provide multidisciplinary knowledge, capabilities and tools to implement this ambitious strategy by the training of young scientists in a program that combines pharmacology, metabolism and mental health research with strategies for product and tool design and validation. Our ultimate goal is to empower the intersectorial and trans-national employability of young scientists across academic, public and private sectors to foster the development and implementation of personalized medicine tools that will provide effective treatment regimens for life long health-care interventions and decrease the risk for development of chronic metabolic diseases.


HarmonicSS vision is to create an International Network and Alliance of partners and cohorts, entrusted with the mission of addressing the unmet needs in primary Sjogren Syndrome; working together to create and maintain a platform with open standards and tools, designed to enable secure storage, governance, analytics, access control and controlled sharing of information at multiple levels along with methods to make results of analyses and outcomes comparable across centers and sustainable through Rheumatology associations. The overall idea of the HarmonicSS project is to bring together the largest well characterized regional, national and international longitudinal cohorts of patients with Primary Sjgrens Syndrome (pSS) including those participating in clinical trials, and after taking into consideration the ethical, legal, privacy and IPR issues for sharing data from different countries, to semantically interlink and harmonize them into an integrative pSS cohort structure on the cloud. Upon this harmonized cohort, services for big data mining, governance and visual analytics will be integrated, to address the identified clinical and health policy pSS unmet needs. In addition, tools for specific diagnostic procedures (e.g. ultrasonography image segmentation), patient selection for clinical trials and training will be also provided. The users of the HarmonicSS platform are researchers (basic/translational), clinicians, health policy makers and pharma companies. pSS is relevant not only due to its clinical impact but also as one of the few model diseases to link autoimmunity, cancer development (lymphoproliferation) and the pathogenetic role of infection. Thus, the study of pSS can facilitate research in many areas of medicine; for this reason, the possibility for sustainability and expandability of the platform is enhanced. Moreover, pSS has a significant impact on the healthcare systems, similar to that of rheumatoid arthritis.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: EINFRA-11-2016 | Award Amount: 16.11M | Year: 2017

PRACE, the Partnership for Advanced Computing is the permanent pan-European High Performance Computing service providing world-class systems for world-class science. Systems at the highest performance level (Tier-0) are deployed by Germany, France, Italy and Spain providing researchers with over 11 billion core hours of compute time. HPC experts from 25 member states enabled users from academia and industry to ascertain leadership and remain competitive in the Global Race. Currently PRACE is in transition to PRACE 2, the successor of the initial five year period. The objectives of PRACE-5IP are to build on and seamlessly continue the successes of PRACE and start new innovative and collaborative activities proposed by the consortium. These include: assisting the transition to PRACE 2 including an analysis of Trans National Access; strengthening the internationally recognised PRACE brand; continuing and extend advanced training which so far provided more than 18 800 persontraining days; preparing strategies and best practices towards Exascale computing; coordinating and enhancing the operation of the multi-tier HPC systems and services; and supporting users to exploit massively parallel systems and novel architectures. A high level Service Catalogue is provided. The proven project structure will be used to achieve each of the objectives in 6 dedicated work packages. The activities are designed to increase Europes research and innovation potential especially through: seamless and efficient Tier-0 services and a pan-European HPC ecosystem including national capabilities; promoting take-up by industry and new communities and special offers to SMEs; implementing a new flexible business model for PRACE 2; proposing strategies for deployment of leadership systems; collaborating with the ETP4HPC, CoEs and other European and international organisations on future architectures, training, application support and policies. This will be monitored through a set of KPIs.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: REV-INEQUAL-04-2016 | Award Amount: 4.91M | Year: 2017

The overarching goal of the project is to understand the economic, social, institutional and policy factors that have shaped the impacts of free movement and public debates about it. It aims to help European policymakers develop policy responses that inspire public trust, ensure the fairness and sustainability of free movement, and maintain inclusive policies that reduce inequalities across the continent. First, the project will generate a deeper understanding of the nature and impacts of intra-EU mobility, focusing in particular on how countries institutional and policy environments shape the impacts of free movement on individuals, households, labour markets, public services and public finances. Second, it will assess how political and media narratives about intra-EU mobility are formed, focusing on the role of traditional and social media, political discourse, and influential participants in public debates. Third, it will assess the relationship between real and perceived impacts, examining the factors that drive realities and misperceptions about free movement and why these debates have unfolded in different ways across the EU. A consortium of researchers with deep understanding of policies and institutions across Europe will implement a multi-disciplinary research strategy. Cutting-edge research methods will range from content analysis based on machine-learning techniques to multi-wave panel and survey experiments to theoretical and empirical analysis of the role of institutions and norms in shaping free movement and public debates about it. The project combines qualitative and quantitative approaches, carefully integrating work packages to allow data and results to flow seamlessly between them. Policy specialists will develop concrete options for reforms. An experienced communications team will work with consortium members to develop accessible resources, ensuring wide reach to policymakers, media practitioners and influential stakeholders across Europe.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: NMBP-03-2016 | Award Amount: 6.22M | Year: 2017

STARCELL proposes the substitution of CRMs in thin film PV by the development and demonstration of a cost effective solution based on kesterite CZTS (Cu2ZnSn(S,Se)4) materials. Kesterites are only formed by elements abundant in the earth crust with low toxicity offering a secure supply chain and minimizing recycling costs and risks, and are compatible with massive sustainable deployment of electricity production at TeraWatt levels. Optimisation of the kesterite bulk properties together with redesign and optimization of the device interfaces and the cell architecture will be developed for the achievement of a challenging increase in the device efficiency up to 18% at cell level and targeting 16% efficiency at mini-module level, in line with the efficiency targets established at the SET Plan for 2020. These efficiencies will allow initiating the transfer of kesterite based processes to pre-industrial stages. These innovations will give to STARCELL the opportunity to demonstrate CRM free thin film PV devices with manufacturing costs 0.30 /Wp, making first detailed studies on the stability and durability of the kesterite devices under accelerated test analysis conditions and developing suitable recycling processes for efficient re-use of material waste. The project will join for the first time the 3 leading research teams that have achieved the highest efficiencies for kesterite in Europe (EMPA, IMRA and IREC) together with the group of the world record holder David Mitzi (Duke University) and NREL (a reference research centre in renewable energies worldwide) in USA, and AIST (the most renewed Japanese research centre in Energy and Environment) in Japan. These groups have during the last years specialised in different aspects of the solar cell optimisation and build the forefront of kesterite research. The synergies of their joined efforts will allow raising the efficiency of kesterite solar cells and mini-modules to values never attained for this technology.

Loading Uppsala University collaborators
Loading Uppsala University collaborators