Upper Midwest Environmental science Center

La Crosse, WI, United States

Upper Midwest Environmental science Center

La Crosse, WI, United States

Time filter

Source Type

Bartsch M.R.,Upper Midwest Environmental science Center | Bartsch L.A.,Upper Midwest Environmental science Center | Richardson W.B.,Upper Midwest Environmental science Center | Vallazza J.M.,Upper Midwest Environmental science Center | Lafrancois B.M.,National Park Service
PLoS ONE | Year: 2017

Increased nutrient and sediment loading in rivers have caused observable changes in algal community composition, and thereby, altered the quality and quantity of food resources available to native freshwater mussels. Our objective was to characterize the relationship between nutrient conditions and mussel food quality and examine the effects on fatty acid composition, growth and survival of juvenile mussels. Juvenile Lampsilis cardium and L. siliquoidea were deployed in cages for 28 d at four riverine and four lacustrine sites in the lower St. Croix River, Minnesota/Wisconsin, USA. Mussel foot tissue and food resources (four seston fractions and surficial sediment) were analyzed for quantitative fatty acid (FA) composition. Green algae were abundant in riverine sites, whereas cyanobacteria were most abundant in the lacustrine sites. Mussel survival was high (95%) for both species. Lampsilis cardium exhibited lower growth relative to L. siliquoidea (p <0.0001), but growth of L. cardium was not significantly different across sites (p = 0.13). In contrast, growth of L. siliquoidea was significantly greater at the most upstream riverine site compared to the lower three lacustrine sites (p = 0.002). In situ growth of Lampsilis siliquoidea was positively related to volatile solids (10 ± 32 μm fraction), total phosphorus (<10 and 10 ± 32 μm fractions), and select FA in the seston (docosapentaeonic acid, DPA, 22:5n3; 4,7,10,13,16-docosapentaenoic, 22:5n6; arachidonic acid, ARA, 20:4n6; and 24:0 in the <10 and 10 ± 32 μm fractions). Our laboratory feeding experiment also indicated high accumulation ratios for 22:5n3, 22:5n6, and 20:4n6 in mussel tissue relative to supplied algal diet. In contrast, growth of L. siliquiodea was negatively related to nearly all FAs in the largest size fraction (i.e., >63 μm) of seston, including the bacterial FAs, and several of the FAs associated with sediments. Reduced mussel growth was observed in L. siliquoidea when the abundance of cyanobacteria exceeded 9% of the total phytoplankton biovolume. Areas dominated by cyanobacteria may not provide sufficient food quality to promote or sustain mussel growth. © This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.


Scown M.W.,University of New England of Australia | Thoms M.C.,University of New England of Australia | De Jager N.R.,Upper Midwest Environmental science Center
Hydrology and Earth System Sciences | Year: 2016

Floodplain surface topography is an important component of floodplain ecosystems. It is the primary physical template upon which ecosystem processes are acted out, and complexity in this template can contribute to the high biodiversity and productivity of floodplain ecosystems. There has been a limited appreciation of floodplain surface complexity because of the traditional focus on temporal variability in floodplains as well as limitations to quantifying spatial complexity. An index of floodplain surface complexity (FSC) is developed in this paper and applied to eight floodplains from different geographic settings. The index is based on two key indicators of complexity, variability in surface geometry (VSG) and the spatial organisation of surface conditions (SPO), and was determined at three sampling scales. FSC, VSG, and SPO varied between the eight floodplains and these differences depended upon sampling scale. Relationships between these measures of spatial complexity and seven geomorphological and hydrological drivers were investigated. There was a significant decline in all complexity measures with increasing floodplain width, which was explained by either a power, logarithmic, or exponential function. There was an initial rapid decline in surface complexity as floodplain width increased from 1.5 to 5 km, followed by little change in floodplains wider than 10 km. VSG also increased significantly with increasing sediment yield. No significant relationships were determined between any of the four hydrological variables and floodplain surface complexity. © Author(s) 2016.


Ye L.,University of Illinois at Urbana - Champaign | Amberg J.,Upper Midwest Environmental science Center | Chapman D.,Columbia Environmental Research Center | Gaikowski M.,Upper Midwest Environmental science Center | Liu W.-T.,University of Illinois at Urbana - Champaign
ISME Journal | Year: 2014

Gut microbiota of invasive Asian silver carp (SVCP) and indigenous planktivorous gizzard shad (GZSD) in Mississippi river basin were compared using 16S rRNA gene pyrosequencing. Analysis of more than 440 000 quality-filtered sequences obtained from the foregut and hindgut of GZSD and SVCP revealed high microbial diversity in these samples. GZSD hindgut (GZSD-H) samples (n=23) with >7000 operational taxonomy units (OTUs) exhibited the highest alpha-diversity indices followed by SVCP foregut (n=15), GZSD foregut (n=9) and SVCP hindgut (SVCP-H) (n=24). UniFrac distance-based non-metric multidimensional scaling (NMDS) analysis showed that the microbiota of GZSD-H and SVCP-H were clearly separated into two clusters: samples in the GZSD cluster were observed to vary by sampling location and samples in the SVCP cluster by sampling date. NMDS further revealed distinct microbial community between foregut to hindgut for individual GZSD and SVCP. Cyanobacteria, Proteobacteria, Actinobacteria and Bacteroidetes were detected as the predominant phyla regardless of fish or gut type. The high abundance of Cyanobacteria observed was possibly supported by their role as the fish's major food source. Furthermore, unique and shared OTUs and OTUs in each gut type were identified, three OTUs from the order Bacteroidales, the genus Bacillariophyta and the genus Clostridium were found significantly more abundant in GZSD-H (14.9-22.8%) than in SVCP-H (0.13-4.1%) samples. These differences were presumably caused by the differences in the type of food sources including bacteria ingested, the gut morphology and digestion, and the physiological behavior between GZSD and SVCP. © 2014 International Society for Microbial Ecology. All rights reserved.


Stelzer R.S.,University of Wisconsin - Oshkosh | Thad Scott J.,University of Arkansas | Bartsch L.A.,Upper Midwest Environmental science Center | Parr T.B.,University of Maine, United States
Biogeochemistry | Year: 2014

Organic carbon supply is linked to nitrogen transformation in ecosystems. However, the role of organic carbon quality in nitrogen processing is not as well understood. We determined how the quality of particulate organic carbon (POC) influenced nitrogen transformation in stream sediments by burying identical quantities of varying quality POC (northern red oak (Quercus rubra) leaves, red maple (Acer rubrum) leaves, red maple wood) in stream mesocosms and measuring the effects on nitrogen retention and denitrification compared to a control of combusted sand. We also determined how POC quality affected the quantity and quality of dissolved organic carbon (DOC) and dissolved oxygen concentration in groundwater. Nitrate and total dissolved nitrogen (TDN) retention were assessed by comparing solute concentrations and fluxes along groundwater flow paths in the mesocosms. Denitrification was measured by in situ changes in N2 concentrations (using MIMS) and by acetylene block incubations. POC quality was measured by C:N and lignin:N ratios and DOC quality was assessed by fluorescence excitation emission matrix spectroscopy. POC quality had strong effects on nitrogen processing. Leaf treatments had much higher nitrate retention, TDN retention and denitrification rates than the wood and control treatments and red maple leaf burial resulted in higher nitrate and TDN retention rates than burial of red oak leaves. Leaf, but not wood, burial drove pore water to severe hypoxia and leaf treatments had higher DOC production and different DOC chemical composition than the wood and control treatments. We think that POC quality affected nitrogen processing in the sediments by influencing the quantity and quality of DOC and redox conditions. Our results suggest that the type of organic carbon inputs can affect the rates of nitrogen transformation in stream ecosystems. © 2014 Springer International Publishing Switzerland.


Bringolf R.B.,University of Georgia | Heltsley R.M.,Hollings Marine Laboratory | Newton T.J.,Upper Midwest Environmental science Center | Eads C.B.,North Carolina State University | And 3 more authors.
Environmental Toxicology and Chemistry | Year: 2010

The present study measured the occurrence, distribution, and bioaccumulation of fluoxetine in samples of water, polar organic chemical integrative sampler (POCIS), sediment, and caged freshwater mussels at stream sites near a municipal wastewater treatment facility effluent discharge. We assessed the relation of the environmental concentrations to reproductive endpoints in mussels in acute laboratory tests. Concentrations of fluoxetine in water and POCIS samples were similar (<20% difference) within each site and were greatest in the effluent channel (104-119 ng/L), and decreased at 50m and 100m downstream. Likewise, concentrations of fluoxetine in sediment and mussel (Elliptio complanata) tissue were greatest in the effluent channel (17.4 ng/g wet wt for sediment and 79.1 ng/g wet wt for mussels). In 96-h lab tests, fluoxetine significantly induced parturition of nonviable larvae from female E. complanata exposed to 300 μg/L ( p=0.0118) and 3,000 μg/L ( p<0.0001) compared to controls. Fluoxetine exposure at 300 μg/L ( p=0.0075) and 3,000 μg/L ( p=0.0001) also resulted in stimulation of lure display behavior in female Lampsilis fasciola and Lampsilis cardium, respectively. In male E. complanata, 3,000 μg fluoxetine/L significantly induced release of spermatozeugmata during a 48-h exposure. These results suggest that fluoxetine accumulates in mussel tissue and has the potential to disrupt several aspects of reproduction in freshwater mussels, a faunal group recognized as one of the most imperiled in the world. Despite the disparity between measured environmental concentrations of fluoxetine and effects concentrations in our short-term tests with these long-lived animals, additional tests are warranted to evaluate the effects of long-term exposure to environmentally relevant concentrations and critical lifestages (e.g., juveniles). Environ. Toxicol. Chem. 2010;29:1311-1318. © 2010 SETAC.


Thomsen M.,University of Wisconsin-La Crosse | Brownell K.,U.S. Army | Groshek M.,U.S. Army | Kirsch E.,Upper Midwest Environmental science Center
Wetlands | Year: 2012

Phalaris arundinacea (reed canarygrass) is recognized as a problematic invader of North American marshes, decreasing biodiversity and persisting in the face of control efforts. Less is known about its ecology or management in forested wetlands, providing an opportunity to apply information about factors critical to an invader's control in one wetland type to another. In a potted plant experiment and in the field, we documented strong competitive effects of reed canarygrass on the establishment and early growth of tree seedlings. In the field, we demonstrated the effectiveness of a novel restoration strategy, combining site scarification with late fall applications of pre-emergent herbicides. Treatments delayed reed canarygrass emergence the following spring, creating a window of opportunity for the early growth of native plants in the absence of competition from the grass. They also allowed for follow-up herbicide treatments during the growing season. We documented greater establishment of wetland herbs and tree seedlings in treated areas. Data from small exclosures suggest, however, that deer browsing can limit tree seedling height growth in floodplain restorations. Slower tree growth will delay canopy closure, potentially allowing reed canarygrass re-invasion. Thus, it may be necessary to protect tree seedlings from herbivory to assure forest regeneration. © Society of Wetland Scientists (outside USA) 2012.


Stelzer R.S.,University of Wisconsin - Oshkosh | Bartsch L.A.,Upper Midwest Environmental science Center | Richardson W.B.,Upper Midwest Environmental science Center | Strauss E.A.,University of Wisconsin-La Crosse
Freshwater Biology | Year: 2011

1.Although it is well known that sediments can be hot spots for nitrogen transformation in streams, many previous studies have confined measurements of denitrification and nitrate retention to shallow sediments (<5cm deep). We determined the extent of nitrate processing in deeper sediments of a sand plains stream (Emmons Creek) by measuring denitrification in core sections to a depth of 25cm and by assessing vertical nitrate profiles, with peepers and piezometers, to a depth of 70cm. 2.Denitrification rates of sediment slurries based on acetylene block were higher in shallower core sections. However, core sections deeper than 5cm accounted for 68% of the mean depth-integrated denitrification rate. 3.Vertical hydraulic gradient and vertical profiles of pore water chloride concentration suggested that deep ground water upwelled through shallow sediments before discharging to the stream channel. The results of a two-source mixing model based on chloride concentrations suggested that the hyporheic zone was very shallow (<5cm) in Emmons Creek. 4.Vertical profiles showed that nitrate concentration in shallow ground water was about 10-60% of the nitrate concentration of deep ground water. The mean nitrate concentrations of deep and shallow ground water were 2.17 and 0.73mgNO3-NL-1, respectively. 5.Deep ground water tended to be oxic (6.9mgO2L-1) but approached anoxia (0.8mgO2L-1) after passing through shallow, organic carbon-rich sediments, which suggests that the decline in the nitrate concentrations of upwelling ground water was because of denitrification. 6.Collectively, our results suggest that there is substantial nitrate removal occurring in deep sediments, below the hyporheic zone, in Emmons Creek. Our findings suggest that not accounting for nitrate removal in deep sediments could lead to underestimates of nitrogen processing in streams and catchments. © 2011 Blackwell Publishing Ltd.


Hamilton C.M.,University of Wisconsin - Madison | Martinuzzi S.,University of Wisconsin - Madison | Plantinga A.J.,Oregon State University | Radeloff V.C.,University of Wisconsin - Madison | And 4 more authors.
PLoS ONE | Year: 2013

Land-use change around protected areas can reduce their effective size and limit their ability to conserve biodiversity because land-use change alters ecological processes and the ability of organisms to move freely among protected areas. The goal of our analysis was to inform conservation planning efforts for a nationwide network of protected lands by predicting future land use change. We evaluated the relative effect of three economic policy scenarios on land use surrounding the U.S. Fish and Wildlife Service's National Wildlife Refuges. We predicted changes for three land-use classes (forest/range, crop/pasture, and urban) by 2051. Our results showed an increase in forest/range lands (by 1.9% to 4.7% depending on the scenario), a decrease in crop/pasture between 15.2% and 23.1%, and a substantial increase in urban land use between 28.5% and 57.0%. The magnitude of land-use change differed strongly among different USFWS administrative regions, with the most change in the Upper Midwestern US (approximately 30%), and the Southeastern and Northeastern US (25%), and the rest of the U.S. between 15 and 20%. Among our scenarios, changes in land use were similar, with the exception of our "restricted-urban-growth" scenario, which resulted in noticeably different rates of change. This demonstrates that it will likely be difficult to influence land-use change patterns with national policies and that understanding regional land-use dynamics is critical for effective management and planning of protected lands throughout the U.S.


Leet J.K.,Purdue University | Lesteberg K.E.,St. Cloud State University | Schoenfuss H.L.,St. Cloud State University | Olmstead A.W.,Bayer AG | And 3 more authors.
Sexual Development | Year: 2013

Although fathead minnows (Pimephales promelas) are commonly used as a model fish in endocrine disruption studies, past studies have not characterized sex-specific baseline expression of genes involved in sex differentiation during development in this species. Using a sex-linked DNA marker to verify gender, we evaluated the expression over time of genes involved in sex differentiation (dmrt1, cyp19a, cyp17, star, esr1, ar) in developing fathead minnows (10-45 days post hatch). Evaluation of these molecular markers in combination with gender identification help us to better understand the mechanisms regulating sex differentiation in fathead minnows and how endocrine-disrupting chemicals may alter these processes. © 2013 S. Karger AG, Basel.


Crimmins S.M.,Upper Midwest Environmental science Center | Boma P.,Upper Midwest Environmental science Center | Thogmartin W.E.,Upper Midwest Environmental science Center
River Research and Applications | Year: 2015

Conservationists are in need of objective metrics for prioritizing the management of habitats. For individual species, the threat of extinction is often used to prioritize what species are in need of conservation action. Using long-term monitoring data, we applied a Bayesian diffusion approximation to estimate quasi-extinction risk for 54 native fish species within six commercial navigation reaches along a 1350-km gradient of the upper Mississippi River system. We found a strong negative linear relationship between quasi-extinction risk and distance upstream. For some species, quasi-extinction estimates ranged from nearly zero in some reaches to one in others, suggesting substantial variability in threats facing individual river reaches. We found no evidence that species traits affected quasi-extinction risk across the entire system. Our results indicate that fishes within the upper Mississippi River system face localized threats that vary across river impact gradients. This suggests that conservation actions should be focused on local habitat scales but should also consider the additive effects on downstream conditions. We also emphasize the need for identification of proximate mechanisms behind observed and predicted population declines, as conservation actions will require mitigation of such mechanisms. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. © 2015 John Wiley & Sons, Ltd.

Loading Upper Midwest Environmental science Center collaborators
Loading Upper Midwest Environmental science Center collaborators