Upper Austrian Research GmbH

Linz, Austria

Upper Austrian Research GmbH

Linz, Austria
Time filter
Source Type

Agency: European Commission | Branch: FP7 | Program: CP-TP | Phase: HEALTH-2007-1.1-4 | Award Amount: 4.03M | Year: 2009

Our particle-based method allows us to synthesise high complexity peptide arrays by combinatorial synthesis and for an unrivalled prize. We plan to further develop this new technology up to the level of robust prototype machines, and mate it to bioinformatics and readout tools. Together, our procedure(s) should boost the field of proteomics in a similar way as the lithographic technologies did with the field of genomics. Central to our novel method are the activated chemical building blocks that are frozen within solid amino acid particles. Thereby, we can use a colour laser printer to send them to defined addresses on a 2D support, where the particles are simply melted to induce a spatially defined coupling reaction of now freed amino acid derivatives. By repeated printing and melting cycles this simple trick yields high complexity peptide arrays. Based on existing pre-prototypes, we will develop a user-friendly peptide laser printer that spatially defined addresses our 20 different amino acid toners in high resolution to a support (WP1), and a scanner that especially fast and sensitive reads out the large formats delivered by the peptide laser printer (WP2). The increased production of amino acid toners and array supports are other bottlenecks in the output of peptide arrays that are tackled in WP3. This should allow us to increase the output of individual peptide spots from currently 0,5 Million to >10 Million peptides per month. Finally, to foster a market for high complexity peptide arrays, we will work out paradigmatic application examples in WP4. These aim to directly screen for antibiotic or apoptosis inducing D-peptides, and for the comprehensive readout of the different antibodies that patrol the serum of autoimmune patients. Based on user-friendly prototype machines, on first paradigmatic application examples for high complexity peptide arrays, and shielded by a strong patent, the participating SMEs will commercialise this new technology.

Chronakis I.S.,Swedish Institute for Industrial Research and Development | Mekras N.D.,ANTER Ltd. | Wiesauer K.,Upper Austrian Research GmbH | Breuer E.,Upper Austrian Research GmbH | And 3 more authors.
International Journal of Advanced Manufacturing Technology | Year: 2010

The main goals of the 'Material Innovation and Testing' within MASMICRO are the identification of the miniature/micro-materials which are formable, development of new materials for forming and machining, development of an integrated material-testing system and study of material properties for design/analysis applications. Examples of collaborative work and results are presented regarding the processing of functional electrospun polymer micro-/nano-fibre structures and the characterization of their interface properties with tribological testing. By means of optical coherence tomography, a non-destructive inspection approach for these micro-/nano-structured webs was developed and it is also documented in the paper. Further, an application example of artificial neural networks (ANNs) is given, concerning the modelling of nano-fibres material behaviour under tensile testing. It is shown how artificial intelligence approaches (knowledge-based systems-KBS and ANNs) can support, significantly, the representation and processing of materials' knowledge of both, symbolic type, in the case of KBS, and algorithmic type, in the case of ANNs, for the cases dealt within the MASMICRO. © Springer-Verlag London Limited 2009.

Leitner M.,Johannes Kepler University | Mitchell N.,University College London | Kastner M.,Johannes Kepler University | Schlapak R.,Upper Austrian Research GmbH | And 6 more authors.
ACS Nano | Year: 2011

Single-molecule characterization is essential for ascertaining the structural and functional properties of bottom-up DNA nanostructures. Here we enlist three atomic force microscopy (AFM) techniques to examine tetrahedron-shaped DNA nanostructures that are functionally enhanced with small chemical tags. In line with their application for biomolecule immobilization in biosensing and biophysics, the tetrahedra feature three disulfide-modified vertices to achieve directed attachment to gold surfaces. The remaining corner carries a single bioligand that can capture and present individual cargo biomolecules at defined lateral nanoscale spacing. High-resolution AFM topographic imaging confirmed the directional surface attachment as well as the highly effective binding of individual receptor molecules to the exposed bioligands. Insight into the binding behavior at the single-molecule level was gained using molecular recognition force spectroscopy using an AFM cantilever tip with a tethered molecular receptor. Finally, simultaneous topographic and recognition imaging demonstrated the specific receptor-ligand interactions on individual tetrahedra. In summary, AFM characterization verified that the rationally designed DNA nanostructures feature characteristics to serve as valuable immobilization agents in biosensing, biophysics, and cell biology. © 2011 American Chemical Society.

Heise B.,Upper Austrian Research GmbH | Heise B.,Johannes Kepler University | Wiesauer K.,Upper Austrian Research GmbH | Gotzinger E.,Medical University of Vienna | And 6 more authors.
Strain | Year: 2010

We demonstrate that polarisation-sensitive optical coherence tomography (PS-OCT) is suitable for mapping the stress distribution within materials in a contact-free and non-destructive way. In contrast to transmission photoelasticity measurements, the samples do not have to be transparent but can be of scattering nature. Denoising and analysis of fringe patterns in single PS-OCT retardation images are demonstrated to be the bases for a quantitative whole-field evaluation of the internal stress state of samples under investigation. © 2008 Blackwell Publishing Ltd.

Jacak J.,Johannes Kepler University | Hesch C.,Johannes Kepler University | Hesse J.,Upper Austrian Research GmbH | Schutz G.J.,Johannes Kepler University
Analytical Chemistry | Year: 2010

We report the development of a data acquisition method for identifying single molecules on large surfaces with simultaneous characterization of their absorption dipole. The method is based on a previously described device for microarray readout at single molecule sensitivity (Hesse, J.; Sonnleitner, M.; Sonnleitner, A.; Freudenthaler, G.; Jacak, J.; Höglinger, O.; Schindler, H.; Schütz, G. J. Anal. Chem. 2004, 76, 5960-5964). Here, we introduced asynchronous time delay and integration- (TDI-) mode imaging to record also the time course of fluorescence signals: the images thus contain both spatial and temporal information. We demonstrate the principle by modulating the signals via rotating excitation polarization, which allows for discriminating static absorption dipoles against multiple or freely rotating single absorption dipoles. Experiments on BSA carrying different numbers of fluorophores demonstrate the feasibility of the method. Protein species with an average labeling degree of 0.55 and 2.89 fluorophores per protein can be readily distinguished. © 2010 American Chemical Society.

Loading Upper Austrian Research GmbH collaborators
Loading Upper Austrian Research GmbH collaborators