Entity

Time filter

Source Type

Stuttgart, Germany

Treutterer W.,Max Planck Institute for Plasma Physics (Garching) | Cole R.,Unlimited Computer Systems | Grater A.,Max Planck Institute for Plasma Physics (Garching) | Luddecke K.,Unlimited Computer Systems | And 5 more authors.
Fusion Engineering and Design | Year: 2015

The ASDEX Upgrade Discharge Control System DCS is a modern and mature product, originally designed to regulate and supervise ASDEX Upgrade Tokamak plasma operation. In its core DCS is based on a generic, versatile real-time software framework with a plugin architecture that allows to easily combine, modify and extend control function modules in order to tailor the system to required features and let it continuously evolve with the progress of an experimental fusion device. Due to these properties other fusion experiments like the WEST project have expressed interest in adopting DCS. For this purpose, essential parts of DCS must be unpinned from the ASDEX Upgrade environment by exposure or introduction of generalised interfaces. Re-organisation of DCS modules allows distinguishing between intrinsic framework core functions and device-specific applications. In particular, DCS must be prepared for deployment in different system environments with their own realisations for user interface, pulse schedule preparation, parameter server, time and event distribution, diagnostic and actuator systems, network communication and data archiving. The article explains the principles of the revised DCS structure, derives the necessary interface definitions and describes major steps to achieve the separation between general-purpose framework and fusion device specific components. © 2015 Elsevier B.V. All rights reserved. Source


Neu G.,Max Planck Institute for Plasma Physics (Garching) | Cole R.,Unlimited Computer Systems | Grater A.,Max Planck Institute for Plasma Physics (Garching) | Luddecke K.,Unlimited Computer Systems | And 5 more authors.
Fusion Engineering and Design | Year: 2015

Concepts for the configuration of plant systems and plasma control of modern devices such as ITER and W7-X are based on global data structures, or "pulse schedules" or "experiment programs", which specify all physics characteristics (waveforms for controlled actuators and plasma quantities) and all technical characteristics of the plant systems (diagnostics and actuators operation settings) for a planned pulse. At ASDEX Upgrade we use different approach. We observed that the physics characteristics driving the discharge control system (DCS) are frequently modified on a pulse-to-pulse basis. Plant system operation, however, relies on technical standard settings, or "basic configurations" to provide guaranteed resources or services, which evolve according to longer term session or campaign operation schedules. This is why AUG manages technical configuration items separately from physics items. Consistent computation of the DCS configuration requires access to all this physics and technical data, which include the discharge programme (DP), settings of actuator systems and real-time diagnostics, the current system state and a database of static parameters. A Parameter Server provides a unified view on all these parameter sets and acts as the central point of access. We describe the functionality and architecture of the Parameter Server and its embedding into the control environment. © 2015 Elsevier B.V. All rights reserved. Source


Treutterer W.,Max Planck Institute for Plasma Physics (Garching) | Neu G.,Max Planck Institute for Plasma Physics (Garching) | Raupp G.,Max Planck Institute for Plasma Physics (Garching) | Zehetbauer T.,Max Planck Institute for Plasma Physics (Garching) | And 3 more authors.
Fusion Engineering and Design | Year: 2010

The ASDEX Upgrade tokamak experiment is equipped with a versatile discharge monitoring and control system. It allows to develop and use advanced control algorithms to investigate plasma physics under well-defined conditions with the objective of optimising plasma performance. The achievable quality depends on the accuracy with which the plasma state can be reconstructed from measurements under real-time conditions. Today's advanced algorithms need physics quantities - scalar entities as well as profiles. These are obtained processing huge numbers of raw measurements with complex diagnostic algorithms. Adequate network communication for the resulting signals is crucial to satisfy real-time requirements, especially when several diagnostic systems cooperate in a feedback control loop. Support for the technology of choice, however, is not easily available for all of the diverse, highly specialised diagnostic systems. We give an overview about the methods that have been explored at ASDEX Upgrade for real-time signal transfer. In particular, we investigated reflective shared memory and Ethernet technologies. Our solution strives to combine their strengths. For fast communication on dedicated computing nodes, reflective shared memory is used. For the majority of diagnostic systems producing large data blocks at moderate rates, Ethernet connections with UDP protocol are employed. Following ASDEX Upgrade's framework concept, a software layer hides the networks used from both diagnostic and control applications. © 2010 Elsevier B.V. All rights reserved. Source


Raupp G.,Max Planck Institute for Plasma Physics (Garching) | Behler K.,Max Planck Institute for Plasma Physics (Garching) | Eixenberger H.,Max Planck Institute for Plasma Physics (Garching) | Fitzek M.,Unlimited Computer Systems | And 11 more authors.
Fusion Engineering and Design | Year: 2010

To manage and operate a fusion device and measure meaningful data an accurate and stable time is needed. As a benchmark, we suggest to consider time accuracy as sufficient if it is better than typical data errors or process timescales. This allows to distinguish application domains and chose appropriate time distribution methods. For ASDEX Upgrade a standard NTP method provides Unix time for project and operation management tasks, and a dedicated time system generates and distributes a precise experiment time for physics applications. Applying the benchmark to ASDEX Upgrade shows that physics measurements tagged with experiment time meet the requirements, while correlation of NTP tagged operation data with physics data tagged with experiment time remains problematic. Closer coupling of the two initially free running time systems with daily re-sets was an efficient and satisfactory improvement. For ultimate accuracy and seamless integration, however, continuous adjustment of the experiment time clock frequency to NTP is needed, within frequency variation limits given by the benchmark. © 2009 Elsevier B.V. All rights reserved. Source


Treutterer W.,Max Planck Institute for Plasma Physics (Garching) | Neu G.,Max Planck Institute for Plasma Physics (Garching) | Raupp G.,Max Planck Institute for Plasma Physics (Garching) | Zasche D.,Max Planck Institute for Plasma Physics (Garching) | And 3 more authors.
Fusion Engineering and Design | Year: 2012

Establishing adequate technical and physical boundary conditions for a sustained nuclear fusion reaction is a challenging task. Phased feedback control and monitoring for heating, fuelling and magnetic shaping is mandatory, especially for fusion devices aiming at high performance plasmas. Technical and physical interrelations require close collaboration of many components in sequential as well as in parallel processing flows. Moreover, handling of asynchronous, off-normal events has become a key element of modern plasma performance optimisation and machine protection recipes. The manifoldness of plasma states and events, the variety of plant system operation states and the diversity in diagnostic data sampling rates can hardly be mastered with a rigid control scheme. Rather, an adaptive system topology in combination with sophisticated synchronisation and process scheduling mechanisms is suited for such an environment. Moreover, the system is subject to real-time control constraints: response times must be deterministic and adequately short. Therefore, the experimental tokamak device ASDEX Upgrade employs a discharge control system DCS, whose core has been designed to meet these requirements. In the paper we will compare the scheduling schemes for the parallelised realisation of a control workflow and show the advantage of a data-driven workflow over a managed workflow. The data-driven workflow as used in DCS is based on signals connecting process outputs and inputs. These are implemented as real-time streams of data samples. Consequently, real-time signal management forms the foundation of DCS. The paper explains the principal features such as tagged samples, signal groups, algorithmic blocks and processes as well as scheduling schemes which allow DCS control applications to be defined as self-contained modular building blocks glued together by a software framework. By virtue of this sound foundation, DCS is a mature but still evolving system for reliable, distributed control of an entire tokamak device coordinating and monitoring 20 diagnostic systems, 14 magnetic power supplies, 5 heating systems with a total power of more than 25 MW, 8 gas fuelling channels, a pellet injector and a killer gas gun. © 2012 Elsevier B.V. Source

Discover hidden collaborations