University System of Taiwan

Hsinchu, Taiwan

University System of Taiwan

Hsinchu, Taiwan
SEARCH FILTERS
Time filter
Source Type

Liao L.-D.,National Chiao Tung University | Liao L.-D.,University System of Taiwan | Wang I.,University System of Taiwan | Wang I.,National Chiao Tung University | And 4 more authors.
Sensors | Year: 2011

In the present study, novel dry-contact sensors for measuring electro-encephalography (EEG) signals without any skin preparation are designed, fabricated by an injection molding manufacturing process and experimentally validated. Conventional wet electrodes are commonly used to measure EEG signals; they provide excellent EEG signals subject to proper skin preparation and conductive gel application. However, a series of skin preparation procedures for applying the wet electrodes is always required and usually creates trouble for users. To overcome these drawbacks, novel dry-contact EEG sensors were proposed for potential operation in the presence or absence of hair and without any skin preparation or conductive gel usage. The dry EEG sensors were designed to contact the scalp surface with 17 spring contact probes. Each probe was designed to include a probe head, plunger, spring, and barrel. The 17 probes were inserted into a flexible substrate using a one-time forming process via an established injection molding procedure. With these 17 spring contact probes, the flexible substrate allows for high geometric conformity between the sensor and the irregular scalp surface to maintain low skin-sensor interface impedance. Additionally, the flexible substrate also initiates a sensor buffer effect, eliminating pain when force is applied. The proposed dry EEG sensor was reliable in measuring EEG signals without any skin preparation or conductive gel usage, as compared with the conventional wet electrodes. © 2011 by the authors; licensee MDPI, Basel, Switzerland.


Chiu T.-C.,University System of Taiwan | Chiu T.-C.,National Chiao Tung University | Gramann K.,University System of Taiwan | Gramann K.,University of California at San Diego | And 8 more authors.
Psychophysiology | Year: 2012

The present study investigated the brain dynamics accompanying spatial navigation based on distinct reference frames. Participants preferentially using an allocentric or an egocentric reference frame navigated through virtual tunnels and reported their homing direction at the end of each trial based on their spatial representation of the passage. Task-related electroencephalographic (EEG) dynamics were analyzed based on independent component analysis (ICA) and subsequent clustering of independent components. Parietal alpha desynchronization during encoding of spatial information predicted homing performance for participants using an egocentric reference frame. In contrast, retrosplenial and occipital alpha desynchronization during retrieval covaried with homing performance of participants using an allocentric reference frame. These results support the assumption of distinct neural networks underlying the computation of distinct reference frames and reveal a direct relationship of alpha modulation in parietal and retrosplenial areas with encoding and retrieval of spatial information for homing behavior. © 2011 Society for Psychophysiological Research.


Lin C.-L.,University System of Taiwan | Lin C.-L.,National Chiao Tung University | Lin C.-L.,University of California at San Diego | Jung T.-P.,University System of Taiwan | And 10 more authors.
International Journal of Psychophysiology | Year: 2013

This study investigates the relationship between heart rate variability (HRV) and the level of motion sickness (MS) induced by simulated tunnel driving. The HRV indices, normalized low frequency (NLF, 0.04-0.15 Hz), normalized high frequency (NHF, 0.15-0.4 Hz), and LF/HF ratio were correlated with the subjectively and continuously rated MS levels of 20 participants. The experimental results showed that for 13 of the subjects, the MS levels positively correlated with the NLF and the LF/HF ratio and negatively correlated with the NHF. The remaining seven subjects had negative correlations between the MS levels and the NLF and the LF/HF ratio and a positive correlation between the MS levels and the NHF. To clarify this contradiction, this study also inspected the effects of subjects' self-adjustments on the correlations between the MS levels and the HRV indices and showed that the variations in the relationship might be attributed to the subjects' self-adjustments, which they used to relieve the discomfort of MS. © 2012 Elsevier B.V.


Huang C.-C.,National Yang Ming University | Yang D.-M.,National Yang Ming University | Yang D.-M.,Taipei Veterans General Hospital | Lin C.-C.,National Yang Ming University | And 3 more authors.
Traffic | Year: 2011

Rab3A is a small G-protein of the Rab family that is involved in the late steps of exocytosis. Here, we studied the role of Rab3A and its relationship with Munc13-1 and Munc18-1 during vesicle priming. Phorbol 12-myristate 13-acetate (PMA) is known to enhance the percentage of fusion-competent vesicles and this is mediated by protein kinase C (PKC)-independent Munc13-1 activation and PKC-dependent dissociation of Munc18-1 from syntaxin 1a. Our results show that the effects of PMA varied in cells overexpressing Rab3A or mutants of Rab3A and in cells with Rab3A knockdown. When Munc13-1 was overexpressed in Rab3A knockdown cells, secretion was completely inhibited. In cells overexpressing a Rab-interacting molecule (RIM)-binding deficient Munc13-1 mutant, 128-Munc13-1, the effects of Rab3A on PMA-induced secretion was abolished. The effect of PMA, which disappeared in cells overexpressing GTP-Rab3A (Q81L), could be reversed by co-expressing Munc18-1 but not its mutant R39C, which is unable to bind to syntaxin 1a. In cells overexpressing Munc18-1, manipulation of Rab3A activity had no effect on secretion. Finally, Munc18-1 enhanced the dissociation of Rab3A, and such enhancement correlated with exocytosis. In summary, our results support the hypothesis that the Rab3A cycle is coupled with the activation of Munc13-1 via RIM, which accounts for the regulation of secretion by Rab3A. Munc18-1 acts downstream of Munc13-1/RIM/Rab3A and interacts with syntaxin 1a allowing vesicle priming. Furthermore, Munc18-1 promotes Rab3A dissociation from vesicles, which then results in fusion. © 2011 John Wiley & Sons A/S.


Lin C.-T.,University System of Taiwan | Lin C.-T.,National Chiao Tung University | Huang K.-C.,University System of Taiwan | Huang K.-C.,National Chiao Tung University | And 8 more authors.
NeuroImage | Year: 2010

This study investigates brain dynamics and behavioral changes in response to arousing auditory signals presented to individuals experiencing momentary cognitive lapses during a sustained-attention task. Electroencephalographic (EEG) and behavioral data were simultaneously collected during virtual-reality (VR) based driving experiments, in which subjects were instructed to maintain their cruising position and compensate for randomly induced lane deviations using the steering wheel. 30-channel EEG data were analyzed by independent component analysis and the short-time Fourier transform. Across subjects and sessions, intermittent performance during drowsiness was accompanied by characteristic spectral augmentation or suppression in the alpha- and theta-band spectra of a bilateral occipital component, corresponding to brief periods of normal (wakeful) and hypnagogic (sleeping) awareness and behavior. Arousing auditory feedback was delivered to the subjects in half of the non-responded lane-deviation events, which immediately agitated subject's responses to the events. The improved behavioral performance was accompanied by concurrent spectral suppression in the theta- and alpha-bands of the bilateral occipital component. The effects of auditory feedback on spectral changes lasted 30. s or longer. The results of this study demonstrate the amount of cognitive state information that can be extracted from noninvasively recorded EEG data and the feasibility of online assessment and rectification of brain networks exhibiting characteristic dynamic patterns in response to momentary cognitive challenges. © 2010 Elsevier Inc.


Lin C.-T.,University System of Taiwan | Lin C.-T.,National Chiao Tung University | Huang K.-C.,University System of Taiwan | Huang K.-C.,National Chiao Tung University | And 6 more authors.
Journal of Neural Engineering | Year: 2013

Objective. This study explores the neurophysiological changes, measured using an electroencephalogram (EEG), in response to an arousing warning signal delivered to drowsy drivers, and predicts the efficacy of the feedback based on changes in the EEG. Approach. Eleven healthy subjects participated in sustained-attention driving experiments. The driving task required participants to maintain their cruising position and compensate for randomly induced lane deviations using the steering wheel, while their EEG and driving performance were continuously monitored. The arousing warning signal was delivered to participants who experienced momentary behavioral lapses, failing to respond rapidly to lane-departure events (specifically the reaction time exceeded three times the alert reaction time). Main results. The results of our previous studies revealed that arousing feedback immediately reversed deteriorating driving performance, which was accompanied by concurrent EEG theta- and alpha-power suppression in the bilateral occipital areas. This study further proposes a feedback efficacy assessment system to accurately estimate the efficacy of arousing warning signals delivered to drowsy participants by monitoring the changes in their EEG power spectra immediately thereafter. The classification accuracy was up 77.8% for determining the need for triggering additional warning signals. Significance. The findings of this study, in conjunction with previous studies on EEG correlates of behavioral lapses, might lead to a practical closed-loop system to predict, monitor and rectify behavioral lapses of human operators in attention-critical settings. © 2013 IOP Publishing Ltd.


PubMed | University System of Taiwan, National Chiao Tung University, University of Technology, Sydney and University of California at San Diego
Type: Journal Article | Journal: International journal of neural systems | Year: 2016

Research has indicated that fatigue is a critical factor in cognitive lapses because it negatively affects an individuals internal state, which is then manifested physiologically. This study explores neurophysiological changes, measured by electroencephalogram (EEG), due to fatigue. This study further demonstrates the feasibility of an online closed-loop EEG-based fatigue detection and mitigation system that detects physiological change and can thereby prevent fatigue-related cognitive lapses. More importantly, this work compares the efficacy of fatigue detection and mitigation between the EEG-based and a nonEEG-based random method. Twelve healthy subjects participated in a sustained-attention driving experiment. Each participants EEG signal was monitored continuously and a warning was delivered in real-time to participants once the EEG signature of fatigue was detected. Study results indicate suppression of the alpha- and theta-power of an occipital component and improved behavioral performance following a warning signal; these findings are in line with those in previous studies. However, study results also showed reduced warning efficacy (i.e. increased response times (RTs) to lane deviations) accompanied by increased alpha-power due to the fluctuation of warnings over time. Furthermore, a comparison of EEG-based and nonEEG-based random approaches clearly demonstrated the necessity of adaptive fatigue-mitigation systems, based on a subjects cognitive level, to deliver warnings. Analytical results clearly demonstrate and validate the efficacy of this online closed-loop EEG-based fatigue detection and mitigation mechanism to identify cognitive lapses that may lead to catastrophic incidents in countless operational environments.


PubMed | University System of Taiwan
Type: Journal Article | Journal: International journal of psychophysiology : official journal of the International Organization of Psychophysiology | Year: 2013

This study investigates the relationship between heart rate variability (HRV) and the level of motion sickness (MS) induced by simulated tunnel driving. The HRV indices, normalized low frequency (NLF, 0.04-0.15 Hz), normalized high frequency (NHF, 0.15-0.4 Hz), and LF/HF ratio were correlated with the subjectively and continuously rated MS levels of 20 participants. The experimental results showed that for 13 of the subjects, the MS levels positively correlated with the NLF and the LF/HF ratio and negatively correlated with the NHF. The remaining seven subjects had negative correlations between the MS levels and the NLF and the LF/HF ratio and a positive correlation between the MS levels and the NHF. To clarify this contradiction, this study also inspected the effects of subjects self-adjustments on the correlations between the MS levels and the HRV indices and showed that the variations in the relationship might be attributed to the subjects self-adjustments, which they used to relieve the discomfort of MS.


PubMed | University System of Taiwan
Type: Journal Article | Journal: Psychophysiology | Year: 2011

The present study investigated the brain dynamics accompanying spatial navigation based on distinct reference frames. Participants preferentially using an allocentric or an egocentric reference frame navigated through virtual tunnels and reported their homing direction at the end of each trial based on their spatial representation of the passage. Task-related electroencephalographic (EEG) dynamics were analyzed based on independent component analysis (ICA) and subsequent clustering of independent components. Parietal alpha desynchronization during encoding of spatial information predicted homing performance for participants using an egocentric reference frame. In contrast, retrosplenial and occipital alpha desynchronization during retrieval covaried with homing performance of participants using an allocentric reference frame. These results support the assumption of distinct neural networks underlying the computation of distinct reference frames and reveal a direct relationship of alpha modulation in parietal and retrosplenial areas with encoding and retrieval of spatial information for homing behavior.


PubMed | University System of Taiwan
Type: Journal Article | Journal: NeuroImage | Year: 2012

This study investigates the independent modulators that mediate the power spectra of electrophysiological processes, measured by electroencephalogram (EEG), in a sustained-attention experiment. EEG and behavioral data were collected during 1-2 hour virtual-reality based driving experiments in which subjects were instructed to maintain their cruising position and compensate for randomly induced drift using the steering wheel. Independent component analysis (ICA) applied to 30-channel EEG data separated the recorded EEG signals into a sum of maximally temporally independent components (ICs) for each of 30 subjects. Logarithmic spectra of resultant IC activities were then decomposed by principal component analysis, followed by ICA, to find spectrally fixed and temporally independent modulators (IM). Across subjects, the spectral ICA consistently found four performance-related independent modulators: delta, delta-theta, alpha, and beta modulators that multiplicatively affected the spectra of spatially distinct IC processes when the participants experienced waves of alternating alertness and drowsiness during long-hour simulated driving. The activation of the delta-theta modulator increased monotonically as subjects task performances decreased. Furthermore, the time courses of the theta-beta modulator were highly correlated with concurrent changes in driving errors across subjects (r=0.770.13).

Loading University System of Taiwan collaborators
Loading University System of Taiwan collaborators