Toulouse, France
Toulouse, France

Paul Sabatier University is a French university, in the Academy of Toulouse.Founded in 1229, the University of Toulouse is one of the oldest in Europe. Today’s Toulouse III was named for Paul Sabatier, winner of the 1912 Nobel prize in chemistry, when it was established on the foundations of the old university in 1969. The Université Paul Sabatier , an educational leader in France’s Midi-Pyrénées region, offers a broad array of programs in the science, technology, health, and athletics. Wikipedia.


Time filter

Source Type

Patent
French National Center for Scientific Research and University Paul Sabatier | Date: 2015-04-13

A process for preparing phyllomineral synthetic particles formed from constituent chemical elements in stoichiometric proportions including at least one chemical element selected from the group formed from silicon and germanium, and at least one chemical element selected from the group formed from divalent metals and trivalent metals, by a continuous solvothermal treatment at a pressure above 1 MPa and at a temperature between 100 C. and 600 C., by making the reaction medium circulate continuously in a solvothermal treatment zone of a continuous reactor (15) with a residence time of the reaction medium in the solvothermal treatment zone that is suitable for continuously obtaining, at the outlet of the solvothermal treatment zone, a suspension including the phyllomineral synthetic particles.


The invention relates to a compound for use for inducing apoptosis in a cancerous cell, wherein said compound is selected from the group consisting of ApoO, a variant or a fragment thereof, their mixtures, and a vector encoding for said ApoO, variant or fragment thereof. The invention further relates to a compound for use for treating a pathophysiological situation, wherein said compound is an inhibitor of the ApoO activity or of the ApoO gene expression.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC5-16-2014 | Award Amount: 15.99M | Year: 2015

Terrestrial and marine ecosystems provide essential services to human societies. Anthropogenic pressures, however, cause serious threat to ecosystems, leading to habitat degradation, increased risk of collapse and loss of ecosystem services. Knowledge-based conservation, management and restoration policies are needed to improve ecosystem benefits in face of increasing pressures. ECOPOTENTIAL makes significant progress beyond the state-of-the-art and creates a unified framework for ecosystem studies and management of protected areas (PA). ECOPOTENTIAL focuses on internationally recognized PAs in Europe and beyond in a wide range of biogeographic regions, and it includes UNESCO, Natura2000 and LTER sites and Large Marine Ecosystems. Best use of Earth Observation (EO) and monitoring data is enabled by new EO open-access ecosystem data services (ECOPERNICUS). Modelling approaches including information from EO data are devised, ecosystem services in current and future conditions are assessed and the requirements of future protected areas are defined. Conceptual approaches based on Essential Variables, Macrosystem Ecology and cross-scale interactions allow for a deeper understanding of the Earths Critical Zone. Open and interoperable access to data and knowledge is assured by a GEO Ecosystem Virtual Laboratory Platform, fully integrated in GEOSS. Support to transparent and knowledge-based conservation and management policies, able to include information from EO data, is developed. Knowledge gained in the PAs is upscaled to pan-European conditions and used for planning and management of future PAs. A permanent stakeholder consultancy group (GEO Ecosystem Community of Practice) will be created. Capacity building is pursued at all levels. SMEs are involved to create expertise leading to new job opportunities, ensuring long-term continuation of services. In summary, ECOPOTENTIAL uses the most advanced technologies to improve future ecosystem benefits for humankind.


Grant
Agency: European Commission | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2016 | Award Amount: 4.01M | Year: 2016

Large Polycyclic Aromatic Hydrocarbon (PAH) molecules are deeply interwoven in the fabric of the Universe and lock up ~15% of the elemental carbon in the interstellar medium (ISM) of galaxies. They dominate the mid-infrared emission characteristics of galaxies that can be used to trace star formation locally as well as in the early universe, they influence the phase structure of the ISM and the star formation rate of galaxies, and they are the epitome of molecular complexity in space, heralding the importance of top-down chemistry. In spite of the influential role of PAHs in the ISM, their lifecycle, catalytic activity, interaction with interstellar radiation, gas and grains and their role in the organic inventory of solar system bodies is still poorly understood. The EUROPAH ETN aims to change this by creating a highly multidisciplinary network that combines astronomy, molecular physics, molecular spectroscopy, environmental science, quantum chemistry, surface sciences, and plasma physics in a comprehensive research and training program. EUROPAH will train 16 ESRs through cutting edge individual research and innovation projects investigating key physical and chemical processes of PAHs in space and related terrestrial settings and linking directly to R&D needs of our industrial beneficiaries. EUROPAH will engage all ESRs in industry driven innovation activities aimed at R&D of the industrial participants products and services, including outreach activities led by our industrial science communication beneficiary. Research and innovation training is complemented by an extensive program of network-wide training events to expose ESRs to all disciplines in the network and to instill in them a comprehensive set of transferable skills. This will provide the ESRs with a unique learning environment in a multidisciplinary setting aimed at developing a research oriented creative and innovative mind set and will place them well for a future career in academia or in industry.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: INFRADEV-02-2016 | Award Amount: 9.05M | Year: 2017

The European Solar Telescope (EST) will be a revolutionary Research Infrastructure that will play a major role in answering key questions in modern Solar Physics. This 4-meter class solar telescope, to be located in the Canary Islands, will provide solar physicists with the most advanced state-of-the-art observing tools to transform our understanding of the complex phenomena that drive the solar magnetic activity. The principal objective of the present Preparatory Phase is to provide both the EST international consortium and the funding agencies with a detailed plan regarding the implementation of EST. The specific objectives of the proposed preparatory phase are: (1) to explore possible legal frameworks and related governance schemes that can be used by agencies to jointly establish, construct and operate EST as a new research infrastructure, with the implementation of an intermediate temporary organisational structure, as a previous step for future phases of the project; (2) to explore funding schemes and funding sources for EST, including a proposal of financial models to make possible the combination of direct financial and in-kind contributions towards the construction and operation of EST; (3) to compare the two possible sites for EST in the Canary Islands Astronomical Observatories and prepare final site agreements; (4) to engage funding agencies and policy makers for a long-term commitment which guarantees the construction and operation phases of the Telescope; (5) to involve industry in the design of EST key elements to the required level of definition and validation for their final production; (6) to enhance and intensify outreach activities and strategic links with national agencies and the user communities of EST. To accomplish the aforementioned goals, this 4-year project, promoted by the European Association for Solar Telescopes (EAST) and the PRE-EST consortium, encompassing 23 research institutions from 16 countries, will set up the Project Office


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: PHC-24-2015 | Award Amount: 14.94M | Year: 2016

Pharmacogenomics is the study of genetic variability affecting an individuals response to a drug. Its use allows personalized medicine and reduction in trial and error prescribing leading to more efficacious, safer and cost-effective drug therapy. The U-PGx consortium will investigate a pre-emptive genotyping approach (that is: multiple pharmacogenomic variants are collected prospectively and embedded into the patients electronic record) of a panel of important pharmacogenomic variants as a new model of personalised medicine. To meet this goal we combine existing pharmacogenomics guidelines and novel health IT solutions. Implementation will be conducted at a large scale in seven existing European health care environments and accounts for the diversity in health system organisations and settings. Feasibility, health outcome and cost-effectiveness will be investigated. We will formulate European strategies for improving clinical implementation of pharmacogenomics based on the findings of this project.


Grant
Agency: European Commission | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2016 | Award Amount: 4.00M | Year: 2017

Lightning is an extremely energetic electric discharge process in our atmosphere. It significantly affects the concentration of greenhouse gases and it threatens electrical and electronic devices, in particular, when placed on elevated structures like wind turbines or aircraft, and when these structures are built with modern composite materials with inherently low electric conductivity. In addition, even our fundamental understanding of atmospheric electricity is far from complete. New discharge processes in the atmosphere above thunderstorms have been discovered, the so-called Transient Luminous Events (TLEs) in the stratosphere and mesosphere, and Terrestrial Gamma-ray Flashes (TGFs) that emit particle beams of antimatter. These phenomena demand thorough investigations, in geophysics and in the related fields of plasma and high-voltage technology where similar discharges appear. These challenges are approached within the SAINT project with a multidisciplinary and inter-sectorial training platform for 15 ESRs. The platform brings together satellite and ground observations with modelling and lab experiments. It couples scientific studies to applications relevant to industries developing satellite data products, plasma discharge technologies, lightning detection systems and lightning protection devices. With SAINT, we take advantage of the extraordinary opportunity presented by three simultaneous space missions with dedicated instruments to study lightning discharges, TLEs and TGFs, to integrate the unique space data with dedicated novel ground observations, model developments and lab experiments. SAINT will train the next generation of young, innovative scientists to shape the future of research and technology in Europe.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: INSO-4-2015 | Award Amount: 3.50M | Year: 2016

FabSpace 2.0 aims at making universities open innovation centres for their region and improving their contribution to the performance of societies. It will concentrate on one innovation area with high expected socio-economic and environmental impact: geodata-driven innovation, by leveraging space data in particular. When Universities must endorse a new role as co-creators of innovations in the context of Science 2.0 principles, the future realisation of open data as a new innovation scene needs to set up a creative environment in which developers from the civil society or industry or the academic research, public administrations and civil organisations can meet, work together, co-create new tools and business models. The proposal consists in a new kind of fab labs: FabSpaces. A fab lab is a one-stop shop access to any materials, machines and tools to digitally manufacture new products, a FabSpace will be a one-stop shop-access to a range of data (incl. space data), free software & data processing tools, to develop new applications. FabSpace 2.0 will provide a new free-access service and place dedicated to collaborative data-driven innovation in 6 European universities (13 at the end of the project). Through online support, entrepreneurship & innovation leadership trainings for students and researchers, the human capital among FabSpace users will be enhanced. The link between universities, industry, the public sector and civil society will be strengthened with local and European actions/events consisting in developing new applications to tackle challenges launched by ONGs & companies. 1500 students and researchers are expected to use FabSpaces, half of them will participate in workshops and 21 teams will be invited to events were they will meet experts and start-ups. FabSpace sustainability will be ensured before the end of the project. By doing so, FabSpace 2.0 intends to make universities regional catalysts and leaders of innovation in the area of data-driven innovations


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: EO-1-2015 | Award Amount: 2.53M | Year: 2016

The EOMonDis Project aims to improve the operationality of tropical forest products/services in order to better access the funding for the UNFCCC REDD\ policy which is a large market segment for the EO-industry in Europe. Additionally, national forest policy programmes and Zero Deforestation programmes also require forest monitoring systems with assessment of forest/non-forest information using disturbance indicators for deforestation and degradation as well as changes in above ground woody biomass. In order to provide operational forest monitoring services for the humid and dry forests several technical challenges have to be overcome. For example, the occurrence of persistent cloud conditions in tropical regions impact the effective use of optical EO data. Seasonal effects in dry forest ecosystems (leaf-fall) combined with limited availability of multi-seasonal EO data coverages also influence the quality and cost effectiveness of the monitoring systems. These situations will change drastically with the Sentinel constellations which provide the high frequency, high resolution optical and radar data required. Therefore, the overarching goal of EOMonDis is to develop innovative and cost-effective EO-based methods to address the technical challenges for tropical forest monitoring which will also fully utilize the comprehensive information provided by the dense time series of optical and SAR satellite data of Sentinel-1 and 2. The methods developed will be tested on study sites selected to represent the wide range of variety in the tropical biomes, in Malawi, Cameroon, Gabon and Vietnam. Users from these countries will be consulted for consolidation of the service requirements, validation of the services, the customization and improvement of the services to fit into their workflows. Based on a market analysis and service validation by the User a 3year business concept will be developed to ensure that there is income generation after the project completion.

Loading University Paul Sabatier collaborators
Loading University Paul Sabatier collaborators