Paris, France
Paris, France

Paris Diderot University - Paris 7, also known as Université Paris Diderot - Paris 7, is a leading French University located in Paris, France. It is one of the heirs of the Faculty of science of the University of Paris , which, founded in the mid-12th century, was one of the earliest universities established in Europe. It adopted its current name in 1994.Featuring two Nobel Prize laureates, a Fields Medal winner and two former French Ministers of Education among its faculty or former faculty, the University is famous for its teaching in science, especially in mathematics. Indeed many fundamental results of the theory of Probability have been discovered at one of its research centers, the Laboratoire de Probabilités et Modèles Aléatoires . The university is also known for its teaching in psychology, which adopts a specific approach drawing from both the domains of psychopathology and psychoanalysis.But the University also hosts many others disciplines: currently, there are 2300 educators and researchers, 1100 administrative personnel and 26,000 students studying humanities, science, and medicine.Paris Diderot University is a founding member of the higher education and research alliance Sorbonne Paris Cité which is a Public Institution for Scientific Cooperation bringing together four renowned Parisian universities and four higher education and research institutes.Formerly based at the Jussieu Campus in the 5th arrondissement, the University moved to a new campus in the 13th arrondissement, in the Paris Rive Gauche neighborhood. The first buildings were brought into use in 2006. The university has many facilities in Paris, and two in other parts of the general area. In 2012, the University completed its move in its new ultra-modern campus. Wikipedia.


Time filter

Source Type

Patent
French Institute of Health, Medical Research, University Paris Diderot, University of Paris 13 and Assistance Publique Hopitaux De Paris | Date: 2016-11-22

The present invention relates to various soluble forms of CD31, including a novel form which is shed by activated platelets and released into the circulation. Methods for detecting said soluble forms of CD31 are disclosed, as are methods of specifically 1 detecting said platelet-derived shed CD31 and the use of such methods as a diagnostic tool.


Patent
French Institute of Health, Medical Research, University Paris Diderot, University of Paris Descartes and Assistance Publique Hopitaux De Paris Aphp | Date: 2015-03-17

The present invention relates to method for predicting acute rejection in heart recipients. In particular, the present invention relates to a method for predicting acute rejection in a heart recipient comprising the steps consisting of i) determining the expression level (ELi) of at least one miRNAi selected from the group consisting of miR-155, miR-10a, miR-92a and miR-31 in a blood sample obtained from the heart recipient, ii) comparing the expression level (ELi) determined at step i) with a predetermined reference level (ELRi) and iii) and concluding that the recipient has a high risk of developing acute rejection when the level the expression level (ELi) determined at step i) is different (higher or lower) than the predetermined reference level (ELRi).


Patent
French National Center for Scientific Research, Ecole Superieure De Physiquue Et De Chime Industri De La Ville Paris and University Paris Diderot | Date: 2015-06-29

Method for functional imaging of the brain, comprising the following steps: (a) a brain is imaged by ultrasound imaging in order to obtain a vascular image to be studied (IVO), (b) the vascular image to he studied (IVO) is compared automatically, by shape recognition, with a cerebral vascular atlas (AV), and the vascular image to be studied (IVO) is thus located in the cerebral vascular atlas (AV), (c) a cerebral functional atlas (AF) corresponding to said cerebral vascular atlas (AV) and comprising cerebral functional zones (1c) located in this cerebral vascular atlas (AV) is used in such a way as to identify cerebral functional zones (1e) on the vascular image to be studied (IVO).


Patent
French Institute of Health, Medical Research, French National Center for Scientific Research, University of Paris Descartes, Fondation Imagine, University Paris Diderot, University Paris - Sud and Assistance Publique Hopitaux De Paris Aphp | Date: 2015-06-19

The present invention concerns a combination of (i) a DNA methylation inhibitor, and (ii) a Vitamin D receptor agonist, for simultaneous or sequential use in the treatment of a drug resistant cancer and/or in prevention of tumor relapse in a patient suffering from cancer. The present invention also relates to a combination of (i) a DNA methylation inhibitor, and (ii) a Vitamin D receptor agonist, for increasing, restoring or enhancing sensitivity of a patient suffering from cancer to a chemotherapeutic drug in a patient suffering from cancer.


Patent
Paris Science Et Lettres Quartier Latin, French National Center for Scientific Research, University Pierre, Marie Curie and University Paris Diderot | Date: 2016-12-16

The invention relates to an optical device for measuring the position of an object along a first axis, the object being subjected to light radiations emitted by a light source. The optical device comprises: an imaging system comprising an objective for collecting light radiations diffused by the object, the imaging system having an optical axis extending parallel to the first axis; a transmission mask having at least a first aperture and a second aperture, the first aperture and second aperture being spaced from each other along a second axis, perpendicular to the first axis, the transmission mask being arranged so as to let a first part of the radiations and a second part of the radiations which are diffused by the object pass through the first aperture and the second aperture respectively, while blocking a part of the radiations emitted by the light source which is not diffused by the object; and a detector adapted for generating an image including a first spot and a second spot representative of the first part and second part of the radiations impacting the detector plane, wherein variation of the position of the object relative to the object plane of the imaging system along the first axis causes variation of a position of the first spot and of the second spot relative to each other along the second axis.


Patent
French Institute of Health, Medical Research, University of Lorraine, Nancy University Hospital Center, University Paris Diderot and University of Paris Descartes | Date: 2017-01-31

The present invention relates to methods and pharmaceutical compositions for the treatment of cardiovascular fibrosis. In particular, the present invention relates to an inhibitor of Neutrophil Gelatinase-Associated Lipocalin (NGAL) activity or expression for use in a method for treating or preventing cardiovascular fibrosis in a subject in need thereof.


Patent
French Institute of Health, Medical Research, University Paris Diderot and Assistance Publique Hopitaux De Paris | Date: 2015-06-23

The present invention relates to methods and pharmaceutical compositions for the treatment of inflammatory bowel diseases. The presents methods relates to a method of treating an inflammatory bowel disease in a subject in need thereof comprising administering the subject with a therapeutically effective amount of at least one OX1R agonist.


Patent
French Institute of Health, Medical Research, University Paris Diderot and University Paris Est Creteil | Date: 2017-02-07

The present invention relates methods and compositions for preventing or treating various immune diseases including graft-versus-host disease (GVHD) using populations or compositions of immunoregulatory T cells specific for an irrelevant antigen; such cells being activated in vivo by a simultaneous, separate or sequential administration of said antigen.


Carusotto I.,University of Trento | Ciuti C.,University Paris Diderot
Reviews of Modern Physics | Year: 2013

This article reviews recent theoretical and experimental advances in the fundamental understanding and active control of quantum fluids of light in nonlinear optical systems. In the presence of effective photon-photon interactions induced by the optical nonlinearity of the medium, a many-photon system can behave collectively as a quantum fluid with a number of novel features stemming from its intrinsically nonequilibrium nature. A rich variety of recently observed photon hydrodynamical effects is presented, from the superfluid flow around a defect at low speeds, to the appearance of a Mach-Cherenkov cone in a supersonic flow, to the hydrodynamic formation of topological excitations such as quantized vortices and dark solitons at the surface of large impenetrable obstacles. While the review is mostly focused on a specific class of semiconductor systems that have been extensively studied in recent years (planar semiconductor microcavities in the strong light-matter coupling regime having cavity polaritons as elementary excitations), the very concept of quantum fluids of light applies to a broad spectrum of systems, ranging from bulk nonlinear crystals, to atomic clouds embedded in optical fibers and cavities, to photonic crystal cavities, to superconducting quantum circuits based on Josephson junctions. The conclusive part of the article is devoted to a review of the future perspectives in the direction of strongly correlated photon gases and of artificial gauge fields for photons. In particular, several mechanisms to obtain efficient photon blockade are presented, together with their application to the generation of novel quantum phases. © 2013 American Physical Society.


Membrane proteins (MPs) are usually handled in aqueous solutions as protein/detergent complexes. Detergents, however, tend to be inactivating. This situation has prompted the design of alternative surfactants that can be substituted for detergents once target proteins have been extracted from biological membranes and that keep them soluble in aqueous buffers while stabilizing them. The present review focuses on three such systems: Amphipols (APols) are amphipathic polymers that adsorb onto the hydrophobic transmembrane surface of MPs; nanodiscs (NDs) are small patches of lipid bilayer whose rim is stabilized by amphipathic proteins; fluorinated surfactants (FSs) resemble detergents but interfere less than detergents do with stabilizing protein/protein and protein/lipid interactions. The structure and properties of each of these three systems are described, as well as those of the complexes they form with MPs. Their respective usefulness, constraints, and prospects for functional and structural studies of MPs are discussed. © 2010 by Annual Reviews. All rights reserved.

Loading University Paris Diderot collaborators
Loading University Paris Diderot collaborators