Time filter

Source Type

Menomonie, WI, United States

The University of Wisconsin–Stout is a member campus of the University of Wisconsin System. The school was founded in 1891 in Menomonie, Wisconsin and enrolls more than 9,200 students. It is named in honor of its founder, lumber magnate James Huff Stout, and is one of two universities in the UW System not named for the city in which it is located, the other being UW-Parkside. Stout is also the base of operations for a studio of Wisconsin Public Television, where WHWC-TV is licensed from, and is home to the studios for WVSS and WHWC as part of the Wisconsin Public Radio network.Since 1971, UW–Stout is one of only two special mission universities in the UW System: it provides focused programs "related to professional careers in industry, technology, home economics, applied art and the helping professions." UW–Stout's programs prepare students for productive careers in industry, commerce, education, and human development through the study of technology, applied mathematics and science, art and design, business, industrial management, human behavior, family and consumer science, and manufacturing-related engineering and technologies. UW–Stout offers 44 undergraduate majors, and 20 graduate majors, including two advanced graduate majors. The university is one among a small group of polytechnic universities in the United States which tend to be primarily devoted to the instruction of technical arts and applied science. In 2013, UW-Stout was approved by the University of Wisconsin Board of Regents to offer its first doctoral degree, a doctor of education in career and technical education.On March 9, 2007, Stout was designated "Wisconsin's Polytechnic University" by the UW-System Board of Regents. Wikipedia.

Barnett A.E.,University of Wisconsin - Stout
Research on Aging | Year: 2015

Guided by stress process and life course theory, the purpose of this study was to examine adult child caregivers’ psychological and physical health trajectories and how their multiple family (caregiving, marital, and parenting) and nonfamily (employment) roles contributed to these health outcomes over time. Seven waves of data from the Health and Retirement Study were analyzed for 1,300 adult child caregivers using latent growth curve models. Adult child caregivers have distinct psychological and physical health trajectories that are related to their roles over time. The importance of any given role varies by the type of health outcome and timing in the life course. Caregiving alone does not contribute to adult child caregivers’ psychological and physical health; marital and employment roles also contribute significantly to caregivers’ life courses. © The Author(s) 2014

Pearson T.W.,University of Wisconsin - Stout
Culture, Agriculture, Food and Environment | Year: 2013

Over the past few years industrial sand mining has expanded rapidly in western Wisconsin, driven largely by the use of sand in hydraulic fracturing, itself a controversial technology widely deployed in natural gas and oil drilling throughout the United States. A unique geological history combined with existing railroad networks has positioned Wisconsin as a major supplier of "frac sand" and thus a key link in a wider hydrocarbon commodity chain. The unprecedented growth of frac sand mining, however, has raised new social and environmental concerns, becoming the target of grassroots organizing. This article reports on ongoing ethnographic research focused on frac sand conflicts, providing an overview of the main areas of contention, the trajectory of community organizing, and the response of the mining industry. © 2013 by the American Anthropological Association.

Agency: NSF | Branch: Standard Grant | Program: | Phase: ENGINEERING EDUCATION | Award Amount: 454.06K | Year: 2015

This project explores how engineering and technology students experience service learning during their undergraduate programs. One example of service learning is Engineers Without Borders (EWB) USA, which seeks to find practical solutions to community concerns, such as clean water or sustainable sewage systems. Many universities and colleges offer such experiences to their students and believe they are contributing a valuable service to developing communities. However, service learning projects are often compromised because students graduate, and/or faculty leaders move to other institutions, and community ties are lost. The project seeks to find best practices for university/college-based service learning for all stakeholders in these enterprises. This project is a collaboration between Engineers Without Borders USA and University of Wisconsin-Stout researchers, teachers, and students. The project will unfold over four years and includes both engineering and social science students in the work. Student attitudes, beliefs, and goals about community involvement are explored in a cross-institutional way: In addition to studying the UW-Stout EWB chapter, the project looks at data collected by Engineers Without Borders USA, and examines trends and practices throughout chapter projects.

A wider understanding of how to balance the needs of students and communities could be broadly applied to service learning projects outside of the STEM fields. More specifically, community development, economic development, and applied anthropology projects might benefit from this research. Finally, third party stake holders such as employers of STEM students are able to employ students who are better prepared to operate in the global workplace due to their participation in well-formed service learning opportunities. In summary, This work contributes to the development of an economically competitive STEM workforce by providing a guiding structure for effective and ethical service learning initiatives for STEM education. The overall project outcomes are disseminated publicly through a project website, traditional and lay publications and presentations, and the development and delivery of workshops. Further, project outcomes that specifically target the operation of EWB-USA projects are incorporated into the guidelines that are followed by EWB-USAs membership, which includes more than 14,000 individuals.

Agency: NSF | Branch: Continuing grant | Program: | Phase: RSCH EXPER FOR UNDERGRAD SITES | Award Amount: 281.99K | Year: 2014

This project brings together a dynamic and creative group of faculty from the University of Wisconsin-Stout to create an 8-week interdisciplinary REU site targeting first generation and underrepresented minority students. Students and faculty engage in a holistic apprentice-style training model with the overall theme of studying phosphorus pollution in a highly impacted Wisconsin watershed. The team studies inclusive decision-making, social networks among farmers, responsive policy implementation, economic impacts, land-use effects on phosphorus run-off, remediation strategies, and sediment geochronology. Data are integrated into a comprehensive strategy for economically sustainable phosphorus use. Students and faculty participate in professional development programming, interdisciplinary data sharing, and original research activities designed to empower and prepare students for science
careers. Ultimately, this investment in human capital will help produce a workforce trained in interdisciplinary and collaborative thinking necessary to solve 21st century problems.

Intellectual Merit :

This work offers significant intellectual contributions by improving student learning and development in response to research experiences, creating innovative approaches to manage the training and professional development of students and faculty in interdisciplinary research, and understanding the complex processes contributing to phosphorus pollution while developing
sustainable solutions. These efforts dovetail nicely with an ongoing NSF-funded project at UW-Stout to study classroom-based research. The research results are broadly disseminated via student presentations, peer-reviewed literature, local media outlets, and policy stakeholders.

Broader Impacts :

The proposed project is ecpected to result in lasting impacts for students, faculty, and community alike. The PI-teams efforts at synthesizing different research projects centered on the same substantive problems have improved their effectiveness in collaborative problem solving and in teaching undergraduates an interdisciplinary approach to research. The team expects an increase the retention and success of underrepresented groups and their pursuit of advanced science degrees. By sharing results with civic leaders
and government regulators, their new knowledge will impact public policy, the local economy, and regional water quality. This should have a significant impact on developing a more competitive workforce in the social and natural sciences in the US, increasing participation of underrepresented minority groups and women in the sciences, improving undergraduate education in the social
and natural sciences. Most importantly, this project whould have a positive impact on public scientific literacy.

This project, acquiring a shared state-of-the-art JACO-2 robot arm for collaborative research in assistive and rehabilitation robotics, aims to improve the quality of life of individuals with disabilities and the elderly by increasing their independence and community reintegration. It supports research in three areas:
- Assistive technology and vocational rehabilitation systems;
- Robotics and control systems; and
- Health monitoring systems.
In these areas, the participating researchers will use the equipment collaboratively on diverse research projects. In addition, the award should facilitate development of assistive robotics research and training across multiple departments.

This novel instrument enables access by the research community to an instrument that will accelerate research in assistive robotics, vocational rehabilitation, health-care and monitoring, and home care. The proposed projects introduce a simple robot arm manipulation scheme for enabling the incorporation of robotic systems into home environment, thus enhancing the independence and autonomy of individuals with disabilities, and minimizing the necessity for a caregiver. The research projects will also contribute to assisting the elderly and persons with disability to manipulate and communicate with the robot in complex unstructured environments, thereby enhancing safety and reliability of the robotic system, especially for people with lower or upper limb limitations or both lower and upper limb limitations to perform tasks in a more complicated workplace.

Discover hidden collaborations