Time filter

Source Type

Arlington Heights, Wisconsin, United States

Coblentz W.K.,U.S. Department of Agriculture | Hoffman P.C.,University of Wisconsin - Madison | Esser N.M.,University of Wisconsin Marshfield Agricultural Research Station | Bertram M.G.,University of Wisconsin Arlington Agricultural Research Station
Journal of Animal Science | Year: 2013

Our objectives were to describe and test refined procedures for quantifying excreta produced from whole pens of dairy heifers. Previous research efforts attempting to make whole-pen measurements of excreta output have been complicated by the use of organic bedding, which requires cumbersome analytical techniques to quantify excreta apart from the bedding. Research pens equipped with sand-bedded freestalls offer a unique opportunity for refinement of whole-pen fecal collection methods, primarily because sand-bedded freestall systems contain no organic bedding; therefore, concentrations of ash within the manure, sand, and feces can be used to correct for contamination of manure by sand bedding. This study was conducted on a subset of heifers from a larger production-scale feeding trial evaluating ensiled eastern gamagrass [Tripsacum dactyloides (L.) L.] haylage (EGG) that was incorporated into a corn silage/alfalfa haylage-based blended diet at rates of 0, 9.1, 18.3, or 27.4% of total DM. The diet without EGG also was offered on a limitfed basis. Eighty Holstein dairy heifers were blocked (heavy weight, 424 ± 15.9 kg; light weight, 324 ± 22.4 kg) and then assigned to 10 individual pens containing 8 heifers/pen. One pen per block was assigned to each of the 5 research diets, and whole-pen fecal collections were conducted twice for each pen. Grab fecal samples also were gathered from individual heifers within each pen, and subsequent analysis of these whole-pen composites allowed reasonable estimates of OM and NDF excreta output. Under the conditions of our experimental design, pooled SEM for the excreta DM, OM, NDF, and NDF (ash corrected) output were 0.113, 0.085, 0.093, and 0.075 kg·heifer-1·d-1, respectively. For DM excretion, this represented about one-third of the SEM reported for previous whole-pen collections from bedded-pack housing systems. Subsequent calculations of apparent DM and OM digestibilities indicated that the technique was sensitive, and linear trends (P ≤ 0.027) associated with the inclusion rates of EGG within the diet were detected. This technique allows estimation of apparent diet digestibilities on multiple animals simultaneously, thereby mitigating the need for isolating individual animals to obtain digestibility coefficients. The approach appears viable but requires hand labor for collections of multiple pens and thorough mixing of large volumes of manure as well as analytical corrections for sand ingested by lounging heifers. © 2013 American Society of Animal Science. All rights reserved.

Unstable weather, poor drying conditions, and unpredictable rainfall events often place valuable hay crops at risk. Recent research with large round bales composed of alfalfa (Medicago sativa L.) and orchardgrass (Dactylis glomerata L.) has shown that these large-bale packages are particularly sensitive to spontaneous heating and dry matter (DM) losses, as well as other undesirable changes with respect to forage fiber, protein, and energy density. Various formulations of organic acids have been marketed as preservatives, normally for use on hays that are not desiccated adequately in the field to facilitate safe bale storage. Our objectives for this study were to (1) evaluate the efficacy of applying a commercial (buffered) propionic acid-based preservative at 3 rates (0, 0.6, and 1.0% of wet-bale weight) to hays baled at 3 moisture concentrations (19.6, 23.8, and 27.4%) on the subsequent storage characteristics and poststorage nutritive value of alfalfa-orchardgrass forages packaged in large rectangular (285-kg) bales, and then (2) evaluate the in vivo digestibility of these hays in growing lambs. Over a 73-d storage period, the preservative was effective at limiting spontaneous heating in these hays, and a clear effect of application rate was observed for the wettest (27.4%) bales. For drier hays, both acid-application rates (1.0 and 0.6%) yielded comparable reductions in heating degree days >30°C relative to untreated controls. Reductions in spontaneous heating could not be associated with improved recovery of forage DM after storage. In this study, most changes in nutritive value during storage were related to measures of spontaneous heating in simple linear regression relationships; this suggests that the modest advantages in nutritive value resulting from acid treatment were largely associated with perturbations of normal heating patterns during bale storage. Although somewhat erratic, apparent digestibilities of both DM (Y=-0.0080x + 55.6; R2=0.45) and organic matter (Y=-0.0085x + 55.5; R2=0.53) evaluated in growing lambs were also directly related to heating degree days in simple linear relationships. Based on these data, applying propionic acid-based preservatives to large rectangular bales is likely to provide good insurance against spontaneous heating during storage, as well as modest benefits with respect to nutritive value and digestibility. © 2013 American Dairy Science Association.

Coblentz W.K.,U.S. Department of Agriculture | Brink G.E.,U.S. Department of Agriculture | Hoffman P.C.,University of Wisconsin - Madison | Esser N.M.,University of Wisconsin Marshfield Agricultural Research Station | Bertram M.G.,University of Wisconsin Arlington Agricultural Research Station
Journal of Dairy Science | Year: 2014

Our objective was to assess the pasture productivity and forage characteristics of 2 fall-grown oat (Avena sativa L.) cultivars, specifically for extending the grazing season and reducing reliance on harvested forages by replacement dairy heifers. A total of 160 gravid Holstein heifers (80 heifers/yr) were stratified by weight, and assigned to 1 of 10 identical research pens (8 heifers/pen). Initial body weights were 480. ±. 43.5. kg in 2011 and 509. ±. 39.4. kg in 2012. During both years of the trial, four 1.0-ha pasture replicates were seeded in August with Ogle oat (Schumitsch Seed Inc., Antigo, WI), and 4 separate, but similarly configured, pasture replicates were seeded with Forage Plus oat (Kratz Farms, Slinger, WI). Heifer groups were maintained as units, assigned to specific pastures, and then allowed to graze fall-oat pastures for 6. h daily before returning to the barn, where they were offered a forage-based basal total mixed ration. Two heifer groups were retained in confinement (without grazing) as controls and offered the identical total mixed ration as pasture groups. During 2011, available forage mass increased with strong linear and quadratic effects for both cultivars, peaking at almost 9. Mg/ha on October 31. In contrast, forage mass was not affected by evaluation date in 2012, remaining ≤2,639. kg/ha across all dates because of droughty climatic conditions. During 2012, Ogle exhibited greater forage mass than Forage Plus across all sampling dates (2,678 vs. 1,856. kg/ha), largely because of its more rapid maturation rate and greater canopy height. Estimates of energy density for oat forage ranged from 59.6 to 69.1% during 2011, and ranged narrowly from 68.4 to 70.4% during 2012. For 2011, responses for both cultivars had strong quadratic character, in which the most energy-dense forages occurred in mid November, largely due to accumulation of water-soluble carbohydrates that reached maximum concentrations of 18.2 and 15.1% for Forage Plus and Ogle, respectively. Across the 2-yr trial, average daily gain for grazing heifer groups tended to be greater than heifers remaining in confinement (0.85 vs. 0.74. kg/d), but both management strategies produced weight gains within reasonable proximity to normal targets for heifers in this weight range. Fall-grown oat should be managed as stockpiled forage for deferred grazing, and good utilization of fall-oat forage can be accomplished by a one-time removal of standing forage, facilitated by a single lead wire advanced daily to prevent waste. © 2014 American Dairy Science Association.

Coblentz W.K.,U.S. Department of Agriculture | Nellis S.E.,University of Wisconsin - Madison | Hoffman P.C.,University of Wisconsin - Madison | Hall M.B.,U.S. Department of Agriculture | And 3 more authors.
Journal of Dairy Science | Year: 2013

Sixty samples of 'ForagePlus' oat were selected from a previous plot study for analysis of in vitro gas production (IVGP) on the basis of 2 factors: (1) high (n=29) or low (n=31) neutral detergent fiber (NDF; 62.7±2.61 and 45.1±3.91%, respectively); and (2) the range of water-soluble carbohydrates (WSC) within the high- and low-NDF groups. For the WSC selection factor, concentrations ranged from 4.7 to 13.4% (mean=7.9±2.06%) and from 3.5 to 19.4% (mean=9.7±4.57%) within high- and low-NDF forages, respectively. Our objectives were to assess the relationships between IVGP and various agronomic or nutritional characteristics for high- and low-NDF fall-oat forages. Cumulative IVGP was fitted to a single-pool nonlinear regression model: Y=MAX × (1 - e [-K × (t - lag)]), where Y=cumulative gas produced (mL), MAX=maximum cumulative gas produced with infinite incubation time (mL), K=rate constant, t=incubation time (h), and lag=discrete lag time (h). Generally, cumulative IVGP after 12, 24, 36, or 48h within high-NDF fall-oat forages was negatively correlated with NDF, hemicellulose, lignin, and ash, but positively correlated with WSC, nonfiber carbohydrate (NFC), and total digestible nutrients (TDN). For low-NDF fall-grown oat forages, IVGP was positively correlated with growth stage, canopy height, WSC, NFC, and TDN; negative correlations were observed with ash and crude protein (CP) but not generally with fiber components. These responses were also reflected in multiple regression analysis for high- and low-NDF forages. After 12, 24, or 36h of incubation, cumulative IVGP within high-NDF fall-oat forages was explained by complex regression equations utilizing (lignin:NDF)2, lignin:NDF, hemicellulose, lignin, and TDN2 as independent variables (R2≥0.43). Within low-NDF fall-grown oat forages, cumulative IVGP at these incubation intervals was explained by positive linear relationships with NFC that also exhibited high coefficients of determination (R2≥0.75). Gas production was accelerated at early incubation times within low-NDF forages, specifically in response to large pools of WSC that were most likely to be present as forages approached boot stage by late-fall. © 2013 American Dairy Science Association.

Coblentz W.K.,U.S. Department of Agriculture | Muck R.E.,U.S. Department of Agriculture | Borchardt M.A.,U.S. Department of Agriculture | Spencer S.K.,U.S. Department of Agriculture | And 3 more authors.
Journal of Dairy Science | Year: 2014

Dairy producers frequently ask questions about the risks associated with applying dairy slurry to growing alfalfa (Medicago sativa L.). Our objectives were to determine the effects of applying dairy slurry on the subsequent nutritive value and fermentation characteristics of alfalfa balage. Dairy slurry was applied to 0.17-ha plots of alfalfa; applications were made to the second (HARV1) and third (HARV2) cuttings during June and July of 2012, respectively, at mean rates of 42,400±5271 and 41,700±2397L/ha, respectively. Application strategies included (1) no slurry, (2) slurry applied directly to stubble immediately after the preceding harvest, (3) slurry applied after 1 wk of post-ensiled regrowth, or (4) slurry applied after 2 wk of regrowth. All harvested forage was packaged in large, rectangular bales that were ensiled as wrapped balage. Yields of DM harvested from HARV1 (2,477kg/ha) and HARV2 (781kg/ha) were not affected by slurry application treatment. By May 2013, all silages appeared to be well preserved, with no indication of undesirable odors characteristic of clostridial fermentations. Clostridium tyrobutyricum, which is known to negatively affect cheese production, was not detected in any forage on either a pre- or post-ensiled basis. On a pre-ensiled basis, counts for Clostridium cluster 1 were greater for slurry-applied plots than for those receiving no slurry, and this response was consistent for HARV1 (4.44 vs. 3.29 log10 genomic copies/g) and HARV2 (4.99 vs. 3.88 log10 genomic copies/g). Similar responses were observed on a post-ensiled basis; however, post-ensiled counts also were greater for HARV1 (5.51 vs. 5.17 log10 genomic copies/g) and HARV2 (5.84 vs. 5.28 log10 genomic copies/g) when slurry was applied to regrowth compared with stubble. For HARV2, counts also were greater following a 2-wk application delay compared with a 1-wk delay (6.23 vs. 5.45 log10 genomic copies/g). These results suggest that the risk of clostridial fermentations in alfalfa silages is greater following applications of slurry. Based on pre- and post-ensiled clostridial counts, applications of dairy slurry on stubble are preferred (and less risky) compared with delayed applications on growing alfalfa. © 2014 American Dairy Science Association.

Discover hidden collaborations