Time filter

Source Type

Paisley, United Kingdom

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-14-2014 | Award Amount: 6.87M | Year: 2015

The proposed SELFNET project will design and implement an autonomic network management framework to achieve self-organizing capabilities in managing network infrastructures by automatically detecting and mitigating a range of common network problems that are currently still being manually addressed by network operators, thereby significantly reducing operational costs and improving user experience. SELFNET explores a smart integration of state-of-the-art technologies in Software-Defined Networks (SDN), Network Function Virtualization (NFV), Self-Organizing Networks (SON), Cloud computing, Artificial intelligence, Quality of Experience (QoE) and Next-generation networking to provide a novel intelligent network management framework that is capable of assisting network operators in key management tasks: automated network monitoring by the automatic deployment of NFV applications to facilitate system-wide awareness of Health of Network metrics to have more direct and precise knowledge about the real status of the network; autonomic network maintenance by defining high-level tactical measures and enabling autonomic corrective and preventive actions against existing or potential network problems. SELFNET is driven by use cases designed to address major network management problems including Self-protection capabilities against distributed cyber-attacks, Self-healing capabilities against network failures, and Self-optimization to dynamically improve the performance of the network and the QoE of the users. SELFNET is designed within this economic and business context to substantially reduce operational costs of network operators by automating a significant number of current labour-intensive network management tasks. Therefore, SELFNET directly addresses the Strand Network Management challenge highlighted by the EC.

Barbhuiya S.,University of West of Scotland
Construction and Building Materials | Year: 2011

Fly ash and limestone powder are found to be the traditional materials to be used in controlling the segregation potential and deformability of fresh SCC. This research deals with the utilisation of an alternative material, dolomite powder, instead of limestone powder, for the production of SCC. Test results indicated that it is possible to manufacture SCC using fly ash and dolomite powder. The mix containing fly ash and dolomite powder in the ratio 3:1 was found to satisfy the requirements suggested by the European Federation of Producers and Contractors of Specialist Products for Structures (EFNARC) guide for making SCC. © 2011 Elsevier Ltd. All rights reserved.

Beveridge R.,University of West of Scotland
The Analyst | Year: 2013

In the last ten years mass spectrometry has emerged as a powerful biophysical technique capable of providing unique insights into the structure and dynamics of proteins. Part of this explosion in use involves investigations of the most recently 'discovered' subset of proteins: the so-called 'Intrinsically Disordered' or 'Natively Unstructured' proteins. A key advantage of the use of mass spectrometry to study intrinsically disordered proteins (IDPs) is its ability to test biophysical assertions made about why they differ from structured proteins. For example, from the charge state distribution presented by a protein following nano-electrospray (n-ESI) it is possible to infer the range of conformations present in solution and hence the extent of disorder; n-ESI is highly sensitive to the degree of folding at the moment of transfer from the liquid to the gas phase. The combination of mass spectrometry with ion mobility (IM-MS) provides rotationally averaged collision cross-sections of molecular ions which can be correlated with conformation; this too can be applied to IDPs. Another feature which can be monitored by IM-MS is the tendency of disordered proteins to form amyloid fibrils, the protein aggregates involved in the onset of neurodegenerative diseases such as Parkinson's and Alzheimer's. IM-MS provides a useful insight into events that occur during the early stages of aggregation including delineating the structure of the monomer, identifying oligomer distributions, and revealing mechanistic details of the aggregation process. Here we will review the use of MS and IM-MS to study IDPs using examples from our own and other laboratories.

MacKenzie A.,University of West of Scotland
Pharmacology and Therapeutics | Year: 2011

Angiotensin II, through activation of the angiotensin II-type 1 receptor, induces generation of inflammatory mediators in the blood vessel wall and as such plays an active role in the inflammation process. Direct stimulation of reactive oxygen species and nuclear factors seem to be key mechanisms through which this receptor induces inflammation. Inflammatory molecules are also known to modify endothelial cell function, especially endothelium-derived vasoactive agents, and inflammation is increasingly recognized as primary cause of major vascular disorders. There is accumulating evidence that stimulation of the type 1 angiotensin II receptor participates in vascular dysfunction by reducing activity of the endothelium-derived relaxants nitric oxide and hyperpolarizing factors. Furthermore activation of this angiotensin II receptor also enhances generation of endothelium-derived constricting factors, such as endothelin-1. This change in endothelial cell output not only impairs blood vessel relaxation but leads to pro-inflammatory and pro-coagulation conditions that are associated with disease initiation and progression. Pharmacological inhibitors of the angiotensin II pathway and the type 1 receptor subtype are in current clinical use for the treatment of hypertension. However evidence supports that these agents have a positive therapeutic benefit in other vascular pathologies with recognized inflammatory etiology, such as atherosclerosis. © 2010 Elsevier Inc. All rights reserved.

Brody S.,University of West of Scotland
Scientometrics | Year: 2013

A recent critique of the use of journal impact factors (IF) by Vanclay noted imprecision and misuses of IF. However, the substantial alternatives he suggested offer no clear improvement over IF as a single measure of scholarly impact of a journal, leaving IF as not yet replaceable. © 2012 Akadémiai Kiadó, Budapest, Hungary.

Discover hidden collaborations