Entity

Time filter

Source Type

Valladolid, Spain

The University of Valladolid is a public university in the city of Valladolid, province of Valladolid, in the autonomous region of Castile-Leon, Spain. Established in the 13th century, it is one of the oldest universities in the world. The university has 32,000 undergraduate students and more than 2,000 teachers. Wikipedia.


Llamazares B.,University of Valladolid
Fuzzy Sets and Systems | Year: 2016

SUOWA operators are a new family of aggregation functions that simultaneously generalize weighted means and OWA operators. Semi-uninorms, which are an extension of uninorms by dispensing with the symmetry and associativity properties, play a fundamental role in their definition. In this paper we show several procedures to construct semi-uninorms. The first one allows us to obtain continuous semi-uninorms by using ordinal sums of aggregation operators while the second one is based on a combination of several given semi-uninorms. We also pay special attention to the smallest and the largest idempotent semi-uninorms and we point out some advantages of SUOWA operators over WOWA operators. © 2015 Elsevier B.V. Source


Ait Rami M.,University of Valladolid
Systems and Control Letters | Year: 2011

This paper addresses the stabilization problem of positive linear systems which have nonnegative states whenever the initial conditions are nonnegative. The synthesis of static output-feedback controllers that ensure the positivity and asymptotic stability of the closed-loop system is investigated. It is shown that this important problem is completely solved for single-input and single-output positive systems. The proposed approach can be applied to multi-input positive systems with controllers having one rank gains. All the provided conditions are necessary and sufficient and can be solved in terms of Linear Programming. © 2011 Elsevier B.V. All rights reserved. Source


Aguado A.,University of Valladolid | Jarrold M.F.,Indiana University Bloomington
Annual Review of Physical Chemistry | Year: 2011

Recent developments allow heat capacities to be measured for size-selected clusters isolated in the gas phase. For clusters with tens to hundreds of atoms, the heat capacities determined as a function of temperature usually have a single peak attributed to a melting transition. The melting temperatures and latent heats show large size-dependent fluctuations. In some cases, the melting temperatures change by hundreds of degrees with the addition of a single atom. Theory has played a critical role in understanding the origin of the size-dependent fluctuations, and in understanding the properties of the liquid-like and solid-like states. In some cases, the heat capacities have extra features (an additional peak or a dip) that reveal a more complex behavior than simple melting. In this article we provide a description of the methods used to measure the heat capacities and provide an overview of the experimental and theoretical results obtained for sodium and aluminum clusters. © 2011 by Annual Reviews. All rights reserved. Source


Correa-Perez M.E.,University of Valladolid
Investigative ophthalmology & visual science | Year: 2012

This study was intended to assess the reliability of central corneal thickness (CCT) measurements using Cirrus high-definition optical coherence tomography (HD-OCT) in healthy subjects and its accuracy compared with ultrasonic pachymetry. Seventy-seven consecutive subjects were recruited for evaluating repeatability, and agreement between two examiners. To analyze repeatability, one examiner measured 77 eyes four times in succession. To study agreement between two observers, a second independently trained examiner obtained another CCT measurement. We also measured eyes in a subgroup of 20 patients using standard ultrasonic pachymetry. Within-subject standard deviation (S(w)), coefficient of variation (CV), limits of agreement (LoA), and intraclass correlation coefficient (ICC) data were obtained. For repeatability, the S(w) and precision (1.96 × S(w)) were 4.86 and 9.52 μm, respectively. Intraobserver CV was 0.89% and the ICC was 0.98 (95% confidence interval [CI], 0.97-0.99). For agreement between two examiners, the S(w) and precision were 7.58 and 14.85 μm, respectively; the CV was 1.40%. The mean difference between observers was -0.13 μm (95% CI, -1.85 to 1.58; P = 0.87). The width of the LoA was 29.64 μm. Median difference between Cirrus HD-OCT and ultrasound CCT measurements was -4.5 μm (interquartile range, -7.0-0.0; P = 0.04). Cirrus HD-OCT provides repeatable CCT measurements, good agreement between two independently trained examiners, and its systematic bias compared to ultrasonic pachymetry is clinically negligible. Therefore, research laboratories and eye clinics using Cirrus HD-OCT as a diagnostic imaging method, can also benefit from a reliable noncontact pachymeter when counseling patients with glaucoma and those undergoing corneal and refractive surgeries. Source


Garcia-Sancho J.,University of Valladolid
Journal of Physiology | Year: 2014

Key points: Cross-talk between organelles and plasma membrane Ca2+ channels modulates cytosolic Ca2+ signals in different ways. In chromaffin cells Ca2+ entry through voltage-operated channels is amplified by Ca2+ release from the endoplasmic reticulum (ER) and generates subplasmalemmal high Ca2+ microdomains (HCMDs) as high as 20-50 μm, which trigger exocytosis. Subplasmalemmal mitochondria take up Ca2+ from HCMDs and avoid progression of the Ca2+ wave towards the cell core. In non-excitable HEK293 cells activation of store-operated Ca2+ entry triggered by ER Ca2+ emptying also generates subplasmalemmal HCMDs of about 2 μm. In this case most of the Ca2+ is taken up by the ER rather than by mitochondria. This outcome may be explained because sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) has much higher Ca2+ affinity than mitochondria. The relative positioning of organelles, channels and accessory proteins may also play a role. Cross-talk between organelles and plasma membrane Ca2+ channels is essential for modulation of the cytosolic Ca2+ ([Ca2+]C) signals, but such modulation may differ among cells. In chromaffin cells Ca2+ entry through voltage-operated channels induces calcium release from the endoplasmic reticulum (ER) that amplifies the signal. [Ca2+]C microdomains as high as 20-50 μm are sensed by subplasmalemmal mitochondria, which accumulate large amounts of Ca2+ through the mitochondrial Ca2+ uniporter (MCU). Mitochondria confine the high-Ca2+ microdomains (HCMDs) to beneath the plasma membrane, where exocytosis of secretory vesicles happens. Cell core [Ca2+]C is much smaller (1-2 μm). By acting as a Ca2+ sink, mitochondria stabilise the HCMD in space and time. In non-excitable HEK293 cells, activation of store-operated Ca2+ entry, triggered by ER Ca2+ emptying, also generated subplasmalemmal HCMDs, but, in this case, most of the Ca2+ was taken up by the ER rather than by mitochondria. The smaller size of the [Ca2+]C peak in this case (about 2 μm) may contribute to this outcome, as the sarco-endoplasmic reticulum Ca2+ ATPase has much higher Ca2+ affinity than MCU. It is also possible that the relative positioning of organelles, channels and effectors, as well as cytoskeleton and accessory proteins plays an important role. © 2013 The Physiological Society. Source

Discover hidden collaborations