Time filter

Source Type

Trieste, Italy

The University of Trieste is a medium-sized university in Trieste in the Friuli-Venezia Giulia region of Italy. The university consists of 12 faculties, boasts a wide and almost complete range of university courses and currently has about 23,000 students enrolled and 1,000 professors. It was founded in 1924.The historical international vocation of the University of Trieste is witnessed by its intense and high-level activity: Trieste is the centre of many research facilities, with which the University is connected.The number of international inter-university co-operation agreements rapidly increased these last years. These agreements involve staff and student mobility, both within EU Programmes like the Socrates programme and agreements exclusively concerned with research activities.In 2009, in the Il Sole 24 Ore National University Ranking, University of Trieste resulted the second best university in Italy. Moreover, in 2014, it was evaluated the second best Italian university by the Times Higher Education World University Rankings and the 201st worldwide. Wikipedia.

Di Niro R.,University of Trieste
Nucleic acids research | Year: 2010

We have developed a high-throughput protein expression and interaction analysis platform that combines cDNA phage display library selection and massive gene sequencing using the 454 platform. A phage display library of open reading frame (ORF) fragments was created from mRNA derived from different tissues. This was used to study the interaction network of the enzyme transglutaminase 2 (TG2), a multifunctional enzyme involved in the regulation of cell growth, differentiation and apoptosis, associated with many different pathologies. After two rounds of panning with TG2 we assayed the frequency of ORFs within the selected phage population using 454 sequencing. Ranking and analysis of more than 120,000 sequences allowed us to identify several potential interactors, which were subsequently confirmed in functional assays. Within the identified clones, three had been previously described as interacting proteins (fibronectin, SMOC1 and GSTO2), while all the others were new. When compared with standard systems, such as microtiter enzyme-linked immunosorbant assay, the method described here is dramatically faster and yields far more information about the interaction under study, allowing better characterization of complex systems. For example, in the case of fibronectin, it was possible to identify the specific domains involved in the interaction. Source

Maggini L.,University of Namur | Bonifazi D.,University of Namur | Bonifazi D.,University of Trieste
Chemical Society Reviews | Year: 2012

This critical review aims at highlighting the prevailing supramolecular approaches employed nowadays in the preparation of luminescent hierarchised materials. Specifically, it has the ambition to illustrate how progresses in the control of the supramolecular interaction toolbox ultimately led to the development of spectacular luminescent nano- and micro-architectures, through a combination of molecular self-assembly and self-organisation processes involving organic π-conjugated molecules. The reader will be guided through a systematic exploration of the most common avenues to prepare and characterise luminescent self-assembled/self-organised materials embedded into one-, two- or three-dimensional networks, accompanied by a critical discussion of their main advantages and limitations. Key representative examples of this research field will be thoroughly described, with a particular focus on those systems displaying potential on the device application scene. Particular attention will be devoted to the design and synthetic approaches aimed at the preparation of the primary π-conjugated molecular modules, the chemical, structural and electronic properties of which dramatically influence the fate and the features of the self-assembled/self-organised material (215 references). Source

Quintana M.,Autonomous University of San Luis Potosi | Vazquez E.,University of Castilla - La Mancha | Prato M.,University of Trieste
Accounts of Chemical Research | Year: 2013

Graphene is considered a promising material for a range of new applications from flexible electronics to functional nanodevices, such as biosensors or intelligent coatings. Therefore researchers need to develop protocols for the mass production of graphene. One possible method is the exfoliation of graphite to form stable dispersions in organic solvents or even water. In addition, researchers need to find effective ways to control defects and locally induced chemical changes. We expect that traditional organic chemistry can provide solutions to many of these challenges. In this Account, we describe our efforts toward the production of stable dispersions of graphene in a variety of solvents at relatively high concentrations and summarize representative examples of the organic reactions that we have carried out using these stable dispersions.The sonication procedures used to solubilize graphene can often damage these materials. To mitigate these effects, we developed a new methodology that uses mechanochemical activation by ball-milling to exfoliate graphite through interactions with melamine (2,4,6-triamine-1,3,5-triazine) under solid conditions. Alternatively, the addition of reducing agents during sonication leads to larger graphene layers in DMF. Interestingly, the treatment with ferrocene aldehyde, used as a radical trap, induces the formation of multiwalled carbon nanotubes. The resulting graphene sheets, stabilized by the interactions with the solvent, are suitable materials for performing organic reactions.Relatively few organic reactions have been performed in stable dispersions of graphene, but organic functionalization of these materials offers the opportunity to tune their properties. In addition, thermal treatments can remove the appended organic moieties, restoring the intrinsic properties of pristine graphene. We describe a few examples of organic functionalization reactions of graphene, including 1,3-dipolar cycloadditions, amide condensations, nitrene additions, and radical reactions. The design of novel protocols for further organic functionalization should increase our knowledge of the fundamental chemistry of graphene and spur the further development and application of these materials. © 2012 American Chemical Society. Source

Tessarolo A.,University of Trieste
IEEE Transactions on Energy Conversion | Year: 2012

An electric machine equipped with n stator phases is characterized by a set of n \times n phase inductances as concerns the stator section. In the case of nonuniform air gap, these inductances vary as the rotor moves. For their numerical determination as functions of the rotor position an accurate computation algorithm is proposed in this paper based on winding function theory. For permeance function identification, a numerically efficient method is employed based on the magnetostatic finite-element analysis of only three appropriately simplified machine models. In the presence of a field circuit, computation of mutual inductances among it and stator phases is also covered with the same approach. An extension of the method to permanent-magnet machines is also presented. Results are assessed on a six-phase synchronous generator prototype equipped with either a salient-pole wound-field rotor or with an interior permanent-magnet rotor. © 1986-2012 IEEE. Source

The United State Of America, University of Padua and University of Trieste | Date: 2013-01-24

Disclosed are compounds of the formula (I) which are fluorescently labeled antagonists of the A wherein A, R1, R2, and Y are as described herein. Also disclosed are diagnostic compositions and a method of diagnosis of a patient for a possible treatment by an antagonist of the A3 adenosine receptor, involving the use of one or more of these compounds as diagnostic agents.

Discover hidden collaborations