Bilbao, Spain

The University of the Basque Country ; Spanish - Universidad del País Vasco ) is the only public university in the Basque Country , in Northern Spain. It has campuses over the three provinces of the autonomous community: Biscay Campus , Gipuzkoa Campus , and Álava Campus in Vitoria-Gasteiz. It is the main research institution in the Basque Country, carrying out 90% of the basic research made in that territory and taking advantage of the good industrial environment that the region constitutes. Wikipedia.


Time filter

Source Type

Grant
Agency: Cordis | Branch: H2020 | Program: ECSEL-RIA | Phase: ECSEL-04-2015 | Award Amount: 18.33M | Year: 2016

The ageing population and related increase in chronic diseases put considerable pressure on both the healthcare system and the society, resulting in an unsustainable rise of healthcare costs. As a result there is an urgent need to improve efficiency of care and reduce hospitalisation time in order to control cost and increase quality of life. Addressing this need, medical applications need to become less invasive and improve disease detection, diagnosis and treatment using advanced imaging and sensing techniques. ASTONISH will deliver breakthrough imaging and sensing technologies for monitoring, diagnosis and treatment applications by developing smart optical imaging technology that extends the use of minimally invasive diagnosis and treatment and allows for unobtrusive health monitoring. The project will integrate miniaturized optical components, data processing units and SW applications into smart imaging systems that are less obtrusive, cheaper, more reliable and easier to use than state of the art systems. This results into 6 demonstrators by which the technologies will be validated and which allow for pre-clinical testing in the scope of the project. The overall concept within ASTONISH builds on the development and application of common imaging/sensing technologies. Smart algorithms, multimodal fusion techniques and biomedical signal processing will process the acquired data and advanced user interfaces will simplify the complex clinical tasks. These technology components will be integrated to build application specific solutions for physiological signs monitoring, tumour detection, minimally invasive surgery, brain function monitoring and rehabilitation. The ASTONISH partners cover the full value chain, from semiconductor manufacturing to clinical centres testing the final application. The proposed innovations improve the global competitiveness of the European industry in the healthcare domain.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2015-ETN | Award Amount: 3.61M | Year: 2016

Speech is a hugely efficient means of communication: a reduced capacity in listening or speaking creates a significant barrier to social inclusion at all points through the lifespan, in education, work and at home. Hearing aids and speech synthesis can help address this reduced capacity but their use imposes greater listener effort. The fundamental objective of the ETN Enriched communication across the lifespan (ENRICH) is to modify or augment speech with additional information to make it easier to process. Enrichment aims to reduce the listening burden by minimising cognitive load, while maintaining or improving intelligibility. ENRICH will investigate the relationship between cognitive effort and different forms of natural and synthetic speech. Non-intrusive metrics for listening effort will be developed and used to design modification techniques which result in low-burden speech. The value of various enrichment approaches will be evaluated with individuals and cohorts with typically sub-optimal communication ability, e.g., children, hearing-impaired adults, non-native listeners and individuals engaged in simultaneous tasks. The ENRICH consortium consists of 8 beneficiaries and 7 partners from academia, industry and clinical practice in 9 countries, who collectively provide diverse infrastructure for investigating spoken communication and for applying innovations to end-user populations. ENRICH will address the unmet need for multi-skilled practitioners and engineers in this rapidly growing sector currently facing a serious workforce shortage. Through a comprehensive training programme driven by the needs of industry and clinical practice, it will equip fellows with not just the necessary cross-disciplinary knowledge and research techniques, but also with experience of entrepreneurship and technology transfer so they can translate research findings into meaningful products and services that will facilitate spoken language communication in the coming decades.


Grant
Agency: Cordis | Branch: H2020 | Program: Shift2Rail-RIA | Phase: S2R-CFM-IP3-01-2016 | Award Amount: 2.80M | Year: 2016

Research into Enhanced Track, Switches and Structure The railway of the future needs to meet the predicted growth in societal demand in terms of capacity and service, address the environmental challenges of the 21st century, and enable the political objectives of the European Union. IN2TRACK is to set the foundations for a resilient, consistent, cost-efficient, high capacity European network by delivering important building blocks that unlock the innovation potential that have been identified as part of the Shift2Rail Innovation Programme 3. Overall objectives of IN2TRACK are divided into three parts; Enhancing and optimising the switch & crossings and track systems in order to ensure the optimal line usage and capacity; Investigating novel ways of extending the life of bridges and tunnel assets through new approaches to maintaining, repairing and upgrading these structures; Development and adoption of a holistic, whole system-approach. A whole-system approach, which is defined as the system boundaries extending from dynamic wheel-rail interaction (loading input) through to degradation of the S&C system, sub-systems, individual components, and underlying track foundation, will also be at the heart of IN2TRACK on how to reach the objectives. This IN2TRACK proposal addresses each of the areas identified in the H2020-S2RJU-2016-01 call. IN2TRACK is fully aligned with Shift2Rail IP3 in its objectives, approach, and ambition; addressing early enhancements and innovation opportunities.


Grant
Agency: Cordis | Branch: H2020 | Program: IA | Phase: ICT-15-2016-2017 | Award Amount: 16.19M | Year: 2017

The data intensive target sector selected for the DataBio project is the Data-Driven Bioeconomy, focusing in production of best possible raw materials from agriculture, forestry and fishery/aquaculture for the bioeconomy industry to produce food, energy and biomaterials taking into account also various responsibility and sustainability issues. DataBio proposes to deploy a state of the art, big data platform on top of the existing partners infrastructure and solutions - the Big DATABIO Platform.The work will be continuous cooperation of experts from end user and technology provider companies, from bioeconomy and technology research institutes, and of other partners. In the pilots also associated partners and other stakeholders will be actively involved. The selected pilots and concepts will be transformed to pilot implementations utilizing co-innovative methods and tools where the bioeconomy sector end user experts and other stakeholders will give input to the user and sector domain understanding for the requirements specifications for ICT, Big Data and Earth Observation experts and for other solution providers in the consortium. Based on the preparation and requirement specifications work the pilots are implemented utilizing and selecting the best suitable market ready or almost market ready Big Data and Earth Observation methods, technologies, tools and services to be integrated to the common Big DATABIO Platform. During the pilots the close cooperation continues and feedback from the bioeconomy sector user companies will be utilized in the technical and methodological upgrades to pilot implementations. Based on the pilot results and the new solutions also new business opportunities are expected. In addition during the pilots the end user utilizers are participating trainings to learn how to use the solutions and developers also outside the consortium will be activated in the Hackathons to design and develop new tools, services and application for the platform.


Grant
Agency: Cordis | Branch: H2020 | Program: CSA | Phase: INSO-5-2015 | Award Amount: 2.99M | Year: 2016

Developing an enabling environment for social innovation that links actions across the whole field and supports the full exploitation of their potential is vital to addressing societal challenges both in Europe and globally. While there is increasing interest for social innovation as a means of addressing societal challenges, there is also considerable variation in the extent to which different countries and regions have embraced social innovation. There are many research and policy projects and incubation and acceleration programmes with valuable outcomes but these are still largely disconnected. Thus, the overarching aim of this project is to create a network of networks of social innovation actors. This Social Innovation Community (SIC) will identify, engage and connect actors including researchers, social innovators, citizens, policy-makers, as well as intermediaries, businesses, civil society organisations and public sector employees. Through our cross-cutting Work Packages, we will deliver engagement, research, experimentation, learning and policy activities that engage with and support each of the networks. We will ensure that our cross-cutting activities are complementary and build on each others work, rather than operating in silos. As such, this SIC aims to deepen and strengthen existing networks, forge new connections between networks, and create new links to actors and networks which hitherto have not been included in the field of social innovation. The aims of such a community are to generate new social innovations, develop and scale up successful ideas to share and spread knowledge more effectively in order to improve research, practice and policy-making. By creating an enabling environment for social innovation, the project will improve the overall framework conditions for social innovation in Europe. This in turn will support the creation of opportunities for growth and for overcoming the current social and economic crisis affecting much of Europe.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-RISE | Phase: MSCA-RISE-2016 | Award Amount: 846.00K | Year: 2017

MAGNAMED designs, fabricates, and assesses novel magnetic nanostructures (MNS) with unique spin configurations for innovative diagnostics and therapy techniques. An early stage detection and an effective treatment are keystones to reduce cancer mortality. Current clinical procedures fail to detect small concentration of tumoral biomarkers. Magnetic nanoparticles (MNP), like beads, have attracted much attention for their capability to improve cancer detection limits and treatment technologies. However, there are several limitations to the use of MNP. As an emerging alternative, MNS are being explored. Unlike MNP, MNS (e.g. nanodisks) present a planar shape with novel properties for diagnosis: high magnetic moment and large size, which can significantly improve the sensor sensitivity, and for therapy: due to their planar shape, alternate magnetic fields provoke a magneto-mechanical action on the cell membrane that triggers cell death. The efficiency of MNS in these two medical applications has not been investigated yet for MNS at the nanometer scale. The challenge of this project is to produce MNS with nanometer dimensions suitable for medical applications. Several lithography techniques will be used to fabricate MNS in vortex and antiferromagnetic spin configurations covering a broad size range (40 to 4000 nm). After functionalization, MNS will be exploited in: (i) Diagnostics, using giant magnetoresistance (GMR) sensors for the detection of tumoral biomarkers (dermcidin and carcinoembryonic antigen), and (ii) Therapy, effectiveness of tumoral cell annihilation by the magneto-mechanical action of MNS will be evaluated in vitro assays of melanoma and colorectal cancer cells. MAGNAMED is a cross-sectoral and interdisciplinary project involving Physics, Chemistry and Medicine. Findings will have a medium-term impact on the European strategy for early stage detection of cancer and a long-term impact on the development of novel and groundbreaking therapeutics techniques.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: BG-07-2015 | Award Amount: 5.51M | Year: 2016

Objectives: 1) to improve the observation and predictions of oil spreading in the sea using novel on-line sensors on-board vessels, fixed structures or gliders, and smart data transfer into operational awareness systems; 2) to examine the true environmental impacts and benefits of a suite of marine oil spill response methods (mechanical collection in water and below ice, in situ burning, use of chemical dispersants, bioremediation, electro-kinetics, and combinations of these) in cold climate and ice-infested areas; 3) to assess the impacts on biota of naturally and chemically dispersed oil, in situ burning residues and non-collected oil using biomarker methods and to develop specific methods for the rapid detection of the effects of oil pollution; 4) to develop a strategic Net Environmental Benefit Analysis tool (sNEBA) for oil spill response strategy decision making. A true trans-disciplinary consortium will carry out the project. Oil sensors will be applied to novel platforms such as ferry-boxes, smart buoys, and gliders. The environmental impacts of the oil spill response methods will be assessed by performing pilot tests and field experiments in the coastal waters of Greenland, as well as laboratory tests in Svalbard and the Baltic Sea with the main focus on dispersed oil, in situ burning residues and non-collected oil. The sNEBA tool will be developed to include and overarch the biological and technical knowledge obtained in the project, as well as integrate with operational assessments being based on expertise on coastal protection and shoreline response. This can be used in establishing cross-border and trans-boundary cooperation and agreements. The proposal addresses novel observation technology and integrated response methods at extreme cold temperatures and in ice. It also addresses the environmental impacts and includes a partner from Canada. The results are vital for the off-shore industry and will enhance the business of oil spill response services.


The overall objective of PARADDISE project is to rationalize, to structure and to make available to the stakeholders of manufacturing value chain the knowledge and the tools for combining two antithetical processes: Laser Metal Deposition (LMD) and Machining (milling and turning). The project will develop expert CAx technologies, smart components and monitoring and control systems tailored for the hybrid process in a cost-effective way and with structured knowledge about LMD process. The PARADDISE solution will offer a synergetic combination among: i) the high flexibility for the designs and for the materials to be used, the high material efficiency and the high savings in material resources and its associated costs of the LMD operations; and ii) the high accuracy, the high robustness and the high productivity of subtractive operations. The solution will be integrated in the ZVH45/1600 Add\Process hybrid machine from IBARMIA manufacturer (PARADDISE partner), which is already available in the market as well as at TECNALIAs facilities (PARADDISE coordinator). Thus, the PARADDISE project will conceive a process-machine-tools solution. By means of this combined manufacturing process, large scale manufacturers of value-added metallic components will be able to achieve high quality and high productivity with a minimum use of material and energy resources when manufacturing those parts, which will lead to a reduction in manufacturing costs. In that way, the PARADDISE project intends to boost and to spread the use of Laser Metal Deposition (LMD) technology along the life cycle of value-adding metal components.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-EJD | Phase: MSCA-ITN-2016 | Award Amount: 1.57M | Year: 2017

CATMEC is a multi-partner European Joint Doctorate (EJD) Programme offering research training in state-of-the-art sustainable chemical synthesis, catalysis, computational chemistry and bioactive molecule design on both traditional and non-traditional (eg flow) platforms. This Doctoral Training Programme integrates complementary, interdisciplinary and intersectoral training and together with enhanced European mobility through planned secondments of researchers, will contribute to EU policy objectives in scientific training and degree assessment. The researchers will be supervised and mentored by internationally recognised experts and have access to state-of-the-art equipment. Hands-on training will be supplemented by formal training courses in relevant and related fields, and a wide variety of complementary training courses, workshops and seminars. The training of researchers will benefit from secondments to industrial partners, gaining exposure to commercial and complementary environments. Overall, it is anticipated that the CATMEC project will provide Early Stage Researchers (ESRs) with an outstanding training experience, through extensive technical and complementary skills development.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: FETOPEN-1-2014 | Award Amount: 2.96M | Year: 2016

2D-INK is targeted at developing inks of novel 2D semiconducting materials for low-cost large-area fabrication processes on insulating substrates through a new methodology, which will exceed the properties of state-of-the-art graphene- and graphene oxide based inks. Achieving this would represent an important step forward in the processing of 2D semiconducting materials and will provide the key parameters for fabricating the next generation of ultrathin electronic appliances. The inherent high-risk of 2D-INK is countered by a strongly interdisciplinary research team composed of 9 partners (8 academics \ 1 SME) with demonstrated experience in their corresponding fields and with different yet highly complementary backgrounds. Therefore only together and in synergy they will be able to address the challenges of the multiple research and innovation aspects of 2D-INK that cover the entire value chain from materials design and synthesis, characterisation, formulation and processing to device implementation. In addition 2D-INK has the potential to revolutionise research on 2D semiconducting materials way beyond the current interests on synthesis (high impact), since the efficient dispersion and formulation of 2D semiconducting materials into inks enables the applications of 2D semiconducting materials over different scientific and technological disciplines, such as electronics, sensing, photonics, energy storage and conversion, spintronics, etc. Overall, 2D-INK addresses perfectly the challenge of this call as it is an archetype of an early stage, high risk visionary science and technology collaborative research project that explores radically new manufacturing and processing technologies for novel 2D semiconducting materials.

Loading University of the Basque Country collaborators
Loading University of the Basque Country collaborators