Entity

Time filter

Source Type

San Antonio, TX, United States

The University of Texas Health Science Center at San Antonio is an institute of health science education and research located in the South Texas Medical Center, the medical district of the U.S. city of San Antonio, Texas. It is a component of the University of Texas System.The UT Health Science Center is the largest health science university in South Texas. The Health Science Center serves San Antonio and all of the 50,000 square miles area of Central and South Texas. It extends to campuses in the Texas border communities of Laredo and the Lower Rio Grande Valley.The Health Science Center has produced more than 28,000 graduates; more than 3,000 students a year train in an environment that involves more than 100 affiliated hospitals, clinics and health care facilities in South Texas. The university offers more than 65 degrees, the large majority of them being graduate and professional degrees, in the biomedical and health science fields.The Health Science Center is home to the Cancer Therapy & Research Center at The University of Texas Health Science Center San Antonio, designated a National Cancer Institute Cancer Center. The CTRC's Institute for Drug Development is internationally recognized for conducting one of the largest oncology Phase I clinical drug trials programs in the world. Fifteen of the cancer drugs most recently approved by the U.S. Food & Drug Administration underwent development or testing at the IDD. Other noted programs include: cellular and structural biology, urology, nephrology, transplantation biology, aging and longevity studies, cardiology and research imaging. The Health Science Center publishes a periodic magazine, The Mission.In 2006, $263 million of facility upgrades were allocated for the campus by the University of Texas System Board of Regents. This included a $150 million 200,000-square-foot South Texas Research Facility . The building was dedicated in October 2011. Wikipedia.


Hinck A.P.,University of Texas Health Science Center at San Antonio
FEBS Letters | Year: 2012

TGF-βs are small secreted signaling proteins that function as vital regulators of cellular growth and differentiation. They signal through a single pair of receptors, known as TβR-I and TβR-II, and are among the most recently evolved members of the signaling superfamily to which they belong. This review provides an overview of the TGF-β, BMP, and activin receptor complexes that have been determined over the past several years. These structures underscore the shared ancestry of the TGF-βs with the BMPs and activins, but also provide insight as to how the TGF-βs diverged from the BMPs and activins to bind and assemble their receptors in a distinct manner. These distinctive modes of receptor binding engender the TGF-βs with high specificity for their receptors and allow them to fulfill their essential functions in vivo without interference from the many other proteins of the superfamily. © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.


Nikolova Y.S.,University of Texas Health Science Center at San Antonio
Nature neuroscience | Year: 2014

We examined epigenetic regulation in regards to behaviorally and clinically relevant human brain function. Specifically, we found that increased promoter methylation of the serotonin transporter gene predicted increased threat-related amygdala reactivity and decreased mRNA expression in postmortem amygdala tissue. These patterns were independent of functional genetic variation in the same region. Furthermore, the association with amygdala reactivity was replicated in a second cohort and was robust to both sampling methods and age.


Luduena R.F.,University of Texas Health Science Center at San Antonio
International Review of Cell and Molecular Biology | Year: 2013

Tubulin, the protein subunit of microtubules (MTs), is an α/β heterodimer. In this chapter, a hypothesis on the evolution of the tubulin molecule is proposed, based in part on recent reports on the structures and functions of different forms of tubulin and its relatives. The concentration is on three main areas. 1) Evolution of the vertebrate β-tubulin isotypes. In addition to providing a clear idea about the relationships among these isotypes, recent data suggest that tubulin may have functions that do not involve being in a MT, namely, that it can function as an isolated α/β dimer or as a non-MT polymer. 2) Examination of the entire tubulin superfamily, which includes not only tubulins α, β, γ, δ, ε, η, and others but also a variety of prokaryotic proteins. The hypothesis is presented that the common ancestor of all these proteins formed a filamentous curving polymer that used the energy of GTP hydrolysis to apply force to nucleic acids and/or membranes and that this common ancestor may have been coeval with the first cells. A variety of chaperones, motors and MT-associated proteins may have coevolved with tubulin and their histories illuminate that of tubulin. The branched, highly negatively charged C-terminal domain present on α- and β-tubulin appears to be a relatively recent addition to tubulin. 3) The hypothesis is presented that the C-terminal domain may have been of prebiotic origin and that it gradually developed into a protein serving particular metabolic functions whose gene eventually became fused with those of α- and β-tubulin. Finally, some experiments are proposed that could illuminate the probability of these hypotheses. © 2013 Elsevier Inc.


Qin Z.,University of Texas Health Science Center at San Antonio
Atherosclerosis | Year: 2012

Since their establishment thirty years ago, THP-1 cells have become one of most widely used cell lines to investigate the function and regulation of monocytes and macrophages in the cardiovascular system. However, because this cell line was derived from the blood of a patient with acute monocytic leukemia, the extent to which THP-1 cells mimic monocytes and macrophages in the vasculature is not entirely known. This article serves as a meaningful attempt to address this question by reviewing the recent publications. The interactions between THP-1 cells and various vascular cells (such as endothelial cells, smooth muscle cells, adipocytes, and T cells) provide insight into the roles of the interconnection of monocytes-macrophages with other vascular cells during vascular inflammation, particularly atherogenesis and obesity. Transcriptome, microRNA profile, and histone modifications of THP-1 cells shed new light on the regulatory mechanism of the monocytes-macrophages in response to various inflammatory mediators, such as oxidized low density lipoprotein, lipopolysaccharide, and glucose. These studies hint that under certain defined conditions, THP-1 cells not only resemble primary monocytes-macrophages isolated from healthy donors or donors with disease, such as diabetes mellitus, but also mimic the in situ alteration of macrophages in the adipose tissue of obese subjects and in atherosclerotic lesions. A potential trajectory is to use this cell line to study the novel molecular mechanisms in monocytes and macrophages in relation to the physiology and pathophysiology of the cardiovascular system, however, the conclusion of studies employing THP-1 cells requires further verification using primary cells and/or in vivo models to be generalized to monocytes and macrophages. © 2011 Elsevier Ireland Ltd.


Bouamar H.,University of Texas Health Science Center at San Antonio
Blood | Year: 2013

The characterization of immunoglobulin heavy chain (IGH) translocations provides information on the diagnosis and guides therapeutic decisions in mature B-cell malignancies while enhancing our understanding of normal and malignant B-cell biology. However, existing methodologies for the detection of IGH translocations are labor intensive, often require viable cells, and are biased toward known IGH fusions. To overcome these limitations, we developed a capture sequencing strategy for the identification of IGH rearrangements at nucleotide level resolution and tested its capabilities as a diagnostic and discovery tool in 78 primary diffuse large B-cell lymphomas (DLBCLs). We readily identified IGH-BCL2, IGH-BCL6, IGH-MYC, and IGH-CCND1 fusions and discovered IRF8, EBF1, and TNFSF13 (APRIL) as novel IGH partners in these tumors. IRF8 and TNFSF13 expression was significantly higher in lymphomas with IGH rearrangements targeting these loci. Modeling the deregulation of IRF8 and EBF1 in vitro defined a lymphomagenic profile characterized by up-regulation of AID and/or BCL6, down-regulation of PRMD1, and resistance to apoptosis. Using a capture sequencing strategy, we discovered the B-cell relevant genes IRF8, EBF1, and TNFSF13 as novel targets for IGH deregulation. This methodology is poised to change how IGH translocations are identified in clinical settings while remaining a powerful tool to uncover the pathogenesis of B-cell malignancies.

Discover hidden collaborations