Richardson, TX, United States

University of Texas at Dallas

www.utdallas.edu
Richardson, TX, United States

The University of Texas at Dallas is a public research university in the University of Texas System. The main campus is in Richardson, Texas, Telecom Corridor, 18 miles north of downtown Dallas. The institution, established in 1961 as the Graduate Research Center of the Southwest and later renamed the Southwest Center for Advanced Studies , began as a research arm of Texas Instruments. In 1969 the founders bequeathed SCAS to the state of Texas and Governor Preston Smith signed the bill officially creating the University of Texas at Dallas.UTD offers over 133 academic programs across its seven schools and hosts more than 50 research centers and institutes. With a number of interdisciplinary degree programs, its curriculum is designed to allow study that crosses traditional disciplinary lines and to enable students to participate in collaborative research labs. Entering freshmen average math and critical reading SAT scores are among the highest of the public universities in Texas and 1261 for 2013. The Carnegie Foundation classifies UT Dallas as a "comprehensive doctoral research university" and a "high research activity institution". Research projects include the areas of space science, bioengineering, cybersecurity, nanotechnology, and behavioral and brain science.The school has a Division III athletics program in the American Southwest Conference and fields 13 intercollegiate teams. The university recruits worldwide for its chess team and has a nationally recognized debate team. For the spring 2013 commencement the university granted 1,557 bachelor's degrees, 1,380 master's degrees and 87 PhDs for a total of 3,024 degrees. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Asghar U.,Institute of Cancer Research | Witkiewicz A.K.,University of Texas at Dallas | Turner N.C.,Institute of Cancer Research and Royal Marsden NHS Foundation Trust | Knudsen E.S.,University of Texas at Dallas
Nature Reviews Drug Discovery | Year: 2015

Cancer represents a pathological manifestation of uncontrolled cell division; therefore, it has long been anticipated that our understanding of the basic principles of cell cycle control would result in effective cancer therapies. In particular, cyclin-dependent kinases (CDKs) that promote transition through the cell cycle were expected to be key therapeutic targets because many tumorigenic events ultimately drive proliferation by impinging on CDK4 or CDK6 complexes in the G1 phase of the cell cycle. Moreover, perturbations in chromosomal stability and aspects of S phase and G2/M control mediated by CDK2 and CDK1 are pivotal tumorigenic events. Translating this knowledge into successful clinical development of CDK inhibitors has historically been challenging, and numerous CDK inhibitors have demonstrated disappointing results in clinical trials. Here, we review the biology of CDKs, the rationale for therapeutically targeting discrete kinase complexes and historical clinical results of CDK inhibitors. We also discuss how CDK inhibitors with high selectivity (particularly for both CDK4 and CDK6), in combination with patient stratification, have resulted in more substantial clinical activity. © 2015 Macmillan Publishers Limited. All rights reserved.


Jeevakumar V.,University of Texas at Dallas | Kroener S.,University of Texas at Dallas
Cerebral Cortex | Year: 2016

The N-methyl-D-aspartic acid (NMDA)-hypofunction theory of schizophrenia suggests that schizophrenia is associated with a loss of NMDA receptors, specifically on corticolimbic parvalbumin (PV)-expressing GABAergic interneurons, leading to disinhibition of pyramidal cells and cortical desynchronization. However, the presumed changes in glutamatergic inputs onto PV interneurons have not been tested directly. We treated mice with the NMDAR antagonist ketamine during the second postnatal week and investigated persistent cellular changes in the adult medial prefrontal cortex (mPFC) using whole-cell patch-clamp recordings and immunohistochemistry. Parvalbumin expression in the mPFC was reduced in ketamine-treated (KET) mice, and γ-aminobutyric acid release onto pyramidal cells was reduced in layers 2/3, but not layer 5. Consistent with pyramidal cell disinhibition the frequency of spontaneous glutamatergic inputs onto PV cells was also increased in KET mice. Furthermore, developmental ketamine treatment resulted in an increased NMDA:AMPA ratio in evoked synaptic currents and larger amplitudes of spontaneous NMDAR currents, indicating a homeostatic upregulation of NMDARs in PV interneurons. This upregulation was specific to NR2B subunits, without concomitant alterations in currents through NR2A subunits. These changes altered synaptic integration at PV cells during trains of excitatory postsynaptic potentials. These changes likely impact synaptic coincidence detection and impair cortical network function in the NMDAR antagonism model of schizophrenia. © 2014 The Author. Published by Oxford University Press. All rights reserved.


Yovel G.,Tel Aviv University | O'Toole A.J.,University of Texas at Dallas
Trends in Cognitive Sciences | Year: 2016

Natural movements of the face and body, as well as voice, provide converging cues to a person's identity. To date, person recognition has been studied primarily with static images of faces. Face recognition, however, is part of a larger system, whose preeminent goal is to efficiently recognize dynamic familiar people in unconstrained environments. We present a comprehensive framework for understanding person recognition as it happens in the real world. In this framework, dynamic information plays the central role in binding multi-modal information from the face, body, and the voice to achieve robust and highly accurate recognition. The superior temporal sulcus (STS) integrates multisensory, dynamic information from the whole person for recognition, thereby complementing its role in social cognition. We propose a comprehensive framework for understanding real-life person recognition. In this framework, person recognition often begins at a distance, where biological motion, body, and voice cues to identity can be highly reliable.Person recognition in real life benefits from using multiple sources of information, including the face, body, voice, and biological motion.Dynamic information, in the form of dynamic identity signatures, plays an important role in binding together the face, body, and voice into a multi-modal dynamic representation of a person.Dynamic identity signatures from the face, body, and voice are used to determine person identity.We propose the STS as a neural hub for integrating different sources of motion-based identity information from face, body, and voice. This assigns STS an important role in the processing of both invariant and changeable aspects of the dynamic whole person. © 2016 Elsevier Ltd.


Dussor G.,University of Texas at Dallas
Neuropharmacology | Year: 2015

Migraine is the most common neurological disorder and one of the most common chronic pain conditions. Despite its prevalence, the pathophysiology leading to migraine is poorly understood and the identification of new therapeutic targets has been slow. Several processes are currently thought to contribute to migraine including altered activity in the hypothalamus, cortical-spreading depression (CSD), and afferent sensory input from the cranial meninges. Decreased extracellular pH and subsequent activation of acid-sensing ion channels (ASICs) may contribute to each of these processes and may thus play a role in migraine pathophysiology. Although few studies have directly examined a role of ASICs in migraine, studies directly examining a connection have generated promising results including efficacy of ASIC blockers in both preclinical migraine models and in human migraine patients. The purpose of this review is to discuss the pathophysiology thought to contribute to migraine and findings that implicate decreased pH and/or ASICs in these events, as well as propose issues to be resolved in future studies of ASICs and migraine. This article is part of the Special Issue entitled ‘Acid-Sensing Ion Channels in the Nervous System’. © 2015 Elsevier Ltd


Kilgard M.P.,University of Texas at Dallas
Trends in Neurosciences | Year: 2012

A large body of evidence suggests that neural plasticity contributes to learning and disease. Recent studies suggest that cortical map plasticity is typically a transient phase that improves learning by increasing the pool of task-relevant responses. Here, I discuss a new perspective on neural plasticity and suggest how plasticity might be targeted to reset dysfunctional circuits. Specifically, a new model is proposed in which map expansion provides a form of replication with variation that supports a Darwinian mechanism to select the most behaviorally useful circuits. Precisely targeted neural plasticity provides a new avenue for the treatment of neurological and psychiatric disorders and is a powerful tool to test the neural mechanisms of learning and memory. © 2012 Elsevier Ltd.


Vidyasagar M.,University of Texas at Dallas
Annual Review of Pharmacology and Toxicology | Year: 2015

This article reviews several techniques from machine learning that can be used to study the problem of identifying a small number of features, from among tens of thousands of measured features, that can accurately predict a drug response. Prediction problems are divided into two categories: sparse classification and sparse regression. In classification, the clinical parameter to be predicted is binary, whereas in regression, the parameter is a real number. Well-known methods for both classes of problems are briefly discussed. These include the SVM (support vector machine) for classification and various algorithms such as ridge regression, LASSO (least absolute shrinkage and selection operator), and EN (elastic net) for regression. In addition, several well-established methods that do not directly fall into machine learning theory are also reviewed, including neural networks, PAM (pattern analysis for microarrays), SAM (significance analysis for microarrays), GSEA (gene set enrichment analysis), and k-means clustering. Several references indicative of the application of these methods to cancer biology are discussed. ©2015 by Annual Reviews. All rights reserved.


Grundy S.M.,University of Texas at Dallas
Journal of the American College of Cardiology | Year: 2012

Pre-diabetes represents an elevation of plasma glucose above the normal range but below that of clinical diabetes. Pre-diabetes can be identified as either impaired fasting glucose (IFG) or impaired glucose tolerance (IGT). The latter is detected by oral glucose tolerance testing. Both IFG and IGT are risk factors for type 2 diabetes, and risk is even greater when IFG and IGT occur together. Pre-diabetes commonly associates with the metabolic syndrome. Both in turn are closely associated with obesity. The mechanisms whereby obesity predisposes to pre-diabetes and metabolic syndrome are incompletely understood but likely have a common metabolic soil. Insulin resistance is a common factor; systemic inflammation engendered by obesity may be another. Pre-diabetes has only a minor impact on microvascular disease; glucose-lowering drugs can delay conversion to diabetes, but whether in the long run the drug approach will delay development of microvascular disease is in dispute. To date, the drug approach to prevention of microvascular disease starting with pre-diabetes has not been evaluated. Pre-diabetes carries some predictive power for macrovascular disease, but most of this association appears to be mediated through the metabolic syndrome. The preferred clinical approach to cardiovascular prevention is to treat all the metabolic risk factors. For both pre-diabetes and metabolic syndrome, the desirable approach is lifestyle intervention, especially weight reduction and physical activity. When drug therapy is contemplated and when the metabolic syndrome is present, the primary consideration is prevention of cardiovascular disease. The major targets are elevations of cholesterol and blood pressure. © 2012 American College of Cardiology Foundation.


Grant
Agency: NSF | Branch: Standard Grant | Program: | Phase: EARS | Award Amount: 596.74K | Year: 2016

This EARS (Enhancing Access to the Radio Spectrum) program was founded in response to the 2010 Presidential Memorandum on Unleashing the Wireless Broadband Revolution mandated by Congress as part of the National Broadband Plan. It was referenced in 2010 State of the Union and later on the Middle Class Tax Relief and Job Creation Act of 2012 (More than 1/3 of the bill deals with radio spectrum), the PCAST 2012 Report [Presidents Council of Advisors on Science and Technology] (which calls for vastly increased use of spectrum sharing) and the 2013 Presidential memo (Expanding Americas Leadership in Wireless Innovation). The aim of this program is to identify bold new concepts with the potential to contribute to significant improvements in the efficiency of radio spectrum utilization, protection of passive sensing services, and in the ability for traditionally underserved Americans to benefit from current and future wireless-enabled goods and services. The impact is large on the economics of the Nation as seen on the last FCC bidding of 65MHz of the spectrum for over $45 billion early in 2015. It will enable access to science, engineering, industry, civilian and military users of the radio frequency (RF) spectrum.

Active wireless systems (which transmit and receive RF signals) such as cellular wireless communications have generated numerous advancements in our society and tremendous impacts on the national economy. Passive wireless systems (which only receive usually very faint signals) such as radio astronomy and earth exploration remote sensing have provided economically and scientifically important observations of Earths environment, our solar system and the cosmos (e.g., weather forecasting, observation of solar flares which could affect infrastructure and lives on Earth). Both types of systems play crucial roles for the growth of humanity, thus their advancements need to be accommodated. However, their spectrum requirements are growing and conflicting to a large degree, and radio frequency interference (RFI) from active systems to passive systems is an increasing concern. This calls for a new paradigm of spectrum access and sharing that can cope with the futures needs. This project proposes such a paradigm between cellular wireless communications (CWC) and radio astronomy systems (RAS).

The project develops a novel time and frequency division spectrum access between CWC and RAS, which not only resolves the spectrum requirement conflict but also enhances spectrum access opportunities for both systems. Instead of relying on the geographical isolation of RAS telescopes to avoid RFI, the project introduces a geographical coexistence paradigm between CWC and RAS through the use of a large number of distributed auxiliary radio telescopes (DARTs). The very large scale DARTs will suppress the RFI issue and potentially enable a quantum leap in RASs capabilities. In addition, the project develops novel adaptive circuitry and signal processing algorithms to handle the RFI issue efficiently. In brief, this project develops an interdisciplinary and mutually-beneficial technical solution and framework for spectrum access of CWC and RAS through coordination between them. CWC could gain more spectrum access opportunities which will enable more wireless services/applications and new business opportunities, thus expanding and enriching the national economy. RAS will secure more spectrum access opportunities and enhanced astronomical observation capabilities, thus accelerating its contributions to the fundamental science, knowledge of the universe, and protection of lives on Earth through space environmental information.


Grant
Agency: NSF | Branch: Standard Grant | Program: | Phase: IntgStrat Undst Neurl&Cogn Sys | Award Amount: 800.00K | Year: 2016

1631910
Qin, Zhenpeng

Understanding how the brain controls behavior requires advanced tools to manipulate brain activity. Inspired by recent progress in optogenetics (i.e., a technique to control selected types of brain cells with genetic modification and light stimulation), this project seeks to develop a new set of tools that will allow localized and ultrafast control of brain activity to influence behavior in freely-moving animals. This will be achieved by using light stimulation to rapidly release compounds that are encapsulated in tiny nanometer-sized particles. The ultrafast feature of this novel compound technology is ideally suited to manipulate brain activity that typically occurs on the scale of milliseconds. Importantly, this new technology is suited to packaging and releasing a wide range of chemical and biological compounds, as well as combinations of such compounds. The projects success will have a number of broader impacts. Scientifically, this project will generate a new technology to better understand how the brain works, and thus new knowledge about the brain and behavior. The ultrafast compound release method can potentially develop into a platform technology for other research areas, including the nervous system outside the brain. The collaborative environment of this project will provide interdisciplinary training opportunities for two graduate students with cutting-edge technologies in the fields of engineering and neuroscience. Finally, this project will promote STEM education both in the lab and through community outreach programs.

Advances in methodologies and tools for neuroscience research often lead to fundamental insights into the function of the central and periphery nervous system. Currently available methods for drug infusions using relatively large metal cannulas are not ideal for studies in freely behaving animals, because drug delivery is slow and the cannulas often destroy the brain area under study and/or overlying brain areas. New methods are needed to perform drug infusion or local release in a minimally invasively manner in freely moving animals. Inspired by recent developments in optogenetics, the PIs will develop a versatile optically-triggered system for sub-millisecond compound burst release for the real-time study of brain activity and behavior. Plasmonic liposomes, i.e. liposomes coated with a gold shell layer, can encapsulate a wide range of molecular compounds and be deposited locally in the brain. Due to the small width and poor clearance of the extracellular space in the brain, the plasmonic liposomes can be designed to stay in the injected area for prolonged periods of time. The encapsulated compound can then be quickly burst-released by a near-infrared pulsed laser via an implanted optical fiber. The encapsulated compounds can be designed to release by repeated triggers, allowing multiple on-demand drug release events over an extended period for behavioral studies. In this project, an integrated approach will be developed to deliver and release the encapsulated compounds, and to study the resulting brain activity and behavior change in real-time utilizing Pavlovian fear conditioning. Successful development of this sub-millisecond optically-triggered burst release technique will represent a major technological advancement that addresses the limitations of current techniques for behavioral research. Specifically, improved bio-compatibility and reduced invasiveness are anticipated by the by one-time nanoparticle infusion and on-demand light-triggered drug release. The fast release feature of the new technique will provide sufficient speed to study neuronal communication in neuroscience research. Furthermore, this technique will find wide applications in neuropharmacology research where targeted delivery and localized rapid release are currently unavailable.


Grant
Agency: NSF | Branch: Standard Grant | Program: | Phase: SNM - Scalable NanoManufacturi | Award Amount: 1.25M | Year: 2017

Low-density, high strength composites play a critical role in a wide range of technological areas including aerospace, defense, sports, transportation, and renewable energy. One of the most important classes of low-density materials is polymer matrix composites, which are now used as primary structural materials for large airliners, and in other applications, such as wind turbines and ship structures. The use of nanostructured reinforcements in composites has been shown to improve strength, resulting in structural weight reduction, thereby leading to fuel savings and reduced ecological impact. There is an increasing interest and a strong need for nanomanufacturing technologies for making the nanostructured reinforcement materials and their composites that are scalable in throughput and quantity. Through this Scalable NanoManufacturing (SNM) award, an interdisciplinary research team will work with industry to develop a continuous nanomanufacturing process to fabricate light-weight, high-strength structural composites. Nanometer thick carbon nanotube fabric will be wrapped around individual fibers to create fuzzy carbon fibers to enhance their bonding strength with the surrounding polymer. The nanostructured composites will be tested to evaluate their performance under service environments. The use of the carbon nanotube fabric wrapped carbon fiber composites can potentially reduce the structural weight of aircraft, increase energy efficiency and reduce travel time. This project will make an important contribution to the continued success of the NanoExplorer program. A large number of high school and college students will be involved in all aspects of this multi-disciplinary project. Efforts will be made to recruit students from minority and under-represented groups.

In this project, a continuous nanomanufacturing line will be designed, built and assembled to wrap individual fibers with carbon nanotube fabric, without degrading in-plane carbon fiber properties. The concept of false twist will be employed to scale-up the wrapping process and make it fully automatic. The individually wrapped fuzzy fibers will be subsequently consolidated to form a tow of fibers. The fiber tows will be impregnated in polymer to form prepregs, which will then be stacked and fully cured to prepare composite laminates. The laminates will be characterized for thermal stability and mechanical behavior. The nanomanufacturing process as well as the material preparation configurations will be investigated through computer simulations and models. The successful completion of the project will provide a unique scalable nanomanufacturing process to provide composites with significantly enhanced interfacial shear and compressive strength without degrading fiber tensile properties.

Loading University of Texas at Dallas collaborators
Loading University of Texas at Dallas collaborators