Entity

Time filter

Source Type

Talca, Chile

The University of Talca is a Chilean university located in the cities of Talca, Curicó, Linares, Santa Cruz and Santiago. It is a derivative university, one of the most important universities of the southern-central region of Chile, and it is part of the Chilean Traditional Universities. Wikipedia.


Lavandero B.,University of Talca | Tylianakis J.M.,University of Canterbury
Molecular Ecology | Year: 2013

Food webs typically quantify interactions between species, whereas evolution operates through the success of alleles within populations of a single species. To bridge this gap, we quantify genotypic interaction networks among individuals of a single specialized parasitoid species and its obligate to cyclically parthenogenetic aphid host along a climatic gradient. As a case study for the kinds of questions genotype food webs could be used to answer, we show that genetically similar parasitoids became more likely to attack genetically similar hosts in warmer sites (i.e. there was network-wide congruence between the within-species shared allelic distance of the parasitoid and that of its host). Narrowing of host-genotype-niche breadth by parasitoids could reduce resilience of the network to changes in host genetic structure or invasion by novel host genotypes and inhibit biological control. Thus, our approach can be easily used to detect changes to sub-species-level food webs, which may have important ecological and evolutionary implications, such as promoting host-race specialization or the accelerated loss of functional diversity following extinctions of closely related genotypes. © 2012 Blackwell Publishing Ltd.


Caballero J.,University of Talca
Journal of Molecular Graphics and Modelling | Year: 2010

Inhibitory activities of flavonoid derivatives against aldose reductase (AR) enzyme were modelled by using CoMFA, CoMSIA and GALAHAD methods. CoMFA and CoMSIA methods were used for deriving quantitative structure-activity relationship (QSAR) models. All QSAR models were trained with 55 compounds, after which they were evaluated for predictive ability with additional 14 compounds. The best CoMFA model included both steric and electrostatic fields, meanwhile, the best CoMSIA model included steric, hydrophobic and H-bond acceptor fields. These models had a good predictive quality according to both internal and external validation criteria. On the other hand, GALAHAD was used for deriving a 3D pharmacophore model. Twelve active compounds were used for deriving this model. The obtained model included hydrophobe, hydrogen bond acceptor and hydrogen bond donor features; it was able to identify the active AR inhibitors from the remaining compounds. These in silico tools might be useful in the rational design of new AR inhibitors. © 2010 Elsevier Inc.


Santos L.S.,University of Talca
Journal of the Brazilian Chemical Society | Year: 2011

Man's fascination with chemical reactions goes back to ancient times. With the introduction of spectroscopic techniques, the art of exploiting reactions became an intriguing science. It is, therefore, not surprising that one of the most flourishing and rewarding frontiers in modern Chemistry is the study of reaction mechanisms in chemical and biological processes. As man's imagination does not stop at the frontiers defined by nature, and with the ever increasing power of catalysis, the synthetic organic chemist is poised to make important contributions by inventing and developing new enabling technologies for the generation of new catalysts and methodologies. In this account is offered a new tool for accelerating the development through electrospray ionizationmass spectrometric (ESI-MS) monitoring in new reaction discovering. © 2011 Sociedade Brasileira de Química.


Knowledge of the genetic variation of key economic traits in Eucalyptus globulus under cold conditions is crucial to the genetic improvement of environmental tolerances and other economic traits. A Bayesian analysis of genetic parameters for quantitative traits was carried out in 37 E. globulus open-pollinated families under cold conditions in southern Chile. The trial is located in the Andean foothills, in the Province of Bío-Bío. The Bayesian approach was performed using Gibbs sampling algorithm. Multi-trait linear and threshold models were fitted to phenotypic data (growth traits, survival, and stem straightness). Fifteen years after planting, height, diameter at breast height, and stem volume were found to be weakly to moderately heritable with Bayesian credible intervals (probability of 90 %): (Formula Presented.), respectively. Stem straightness was found to be weakly to moderately heritable ranging from 0.032 to 0.208 (Bayesian 90 % credible interval); posterior mode (Formula Presented.). Tree survival at age of 15 years was high in the trial (84.8 %) with such heritability values ranging from 0.072 to 0.157. Survival was non-significantly genetically correlated to growth and stem straightness. Stem volume had the highest predicted genetic gains ranging from 17.9 to 23.7 % (selection rate of 15.8 and 8.3 %, respectively). The results of this study confirm the potential for selective breeding of this eucalypt in areas of southern Chile where cold is a significant constraint. © 2014 Springer-Verlag Berlin Heidelberg.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ENV.2013.6.1-1 | Award Amount: 9.35M | Year: 2013

The marine food web is at the centre of both the climate-related CO2 cycle and food production in the marine environment. It plays a key role in regulating the climate system and is highly sensitive to climate change and other stressors. OCEAN-CERTAIN will investigate the impact of climatic and non climatic stressors on the food web and the connected biological pump , and the important feedback mechanisms. OCEAN-CERTAIN will identify and quantify multi-stressor impacts and feedbacks and how these alter the functionality and structure of the food web and efficiency of the biological pump in different bio-geographical regions. This will be done by utilizing existing ecosystem models employing existing data, in addition to mesocosm, lab-scale experiments and field study. . The resulting knowledge will then be used to assess socio-economic vulnerabilities and adaptive capacity by using indicators of food-web functions as responses to particular changes by way of stressor combinations. OCEAN-CERTAIN will then address socio-economic policy and management issues by using highly interactive participatory stakeholder workshops to create models of user group resilience and adaptability. These will show how potential climate-driven physical, chemical and biological changes may affect relevant economic activities and human welfare and help to identify adaptation pathways. This information and knowledge will reduce of epistemic uncertainty and help policy makers chose among management options, which in turn will be treated as additional feedbacks to the food web. The stressors, key feedback mechanisms and indicators, form the basis for the design of an integrated Decision Support System (DSS).

Discover hidden collaborations